= e C | 14.95

‘Beyond Games:
Systems Software for Your

' commodore PET professional

computer
2001 Serie=

Beyond Games:
Systems Software for Your

6502

Personal Computer

Ken Skier

BYTE/McGraw-Hill, Book Division, 70 Main St, Peterborough NH 03458

Beyond Games: Systems Software for Your 6502 Personal Computer

Copyright © 1981 BYTE Publications Inc. All Rights Reserved. No part of this
book may be translated or reproduced in any form without the prior written
consent of BYTE Publications Inc.

The author of the programs provided with this book
has carefully reviewed them to ensure their perfor-
mance in accordance with the specifications described
in the book. Neither the author nor BYTE Publica-
tions Inc, however, makes any warranties concerning
the programs and assumes no responsibility or liability
of any kind for errors in the programs, or for the con-
sequences of any such errors, The programs are the
sole property of the author and have been registered
with the United States Copyright Office.

Library of Congress Cataloging in Publication Data

Skier, Ken.
Beyond games.

Includes index.

1. 6502 (Computer)—Programming. 1. Title.
QA76.8.563559 001.642 80-28512
ISBN 0-07-057860-5

Cover photo by Bob Hamor

Text set in Paladium
by BYTE Publications

Edited by Blaise Liffick
Design and Production Supervision

.by Ellen Klempner

Copy Edited by Rich Friedman
Printed and bound using 50#MH Matte

Table of Contents

INtroduction ... v ittt it i e SR |
Chapter |: Your Computer P |
Chapter 2: Introductionto Assembler ...l 8
Chapter 3: Loopsand Subroutinescoouiviiiniiienneneninnenenn. 20
Chapter 4: Arithmeticand Logic e e 32
Chapter 5: ScreenUtilitieso 44
Chapter 6: The Visible Monitoro iiiii it 60
Chapter 7: Print Utilities g 84
Chapter 8: Two Hexdump Tools 98
Chapter 9: A Table-Driven Disassemblerovilt. 114
Chapter 10: A General MOVE Utilityo, 134
Chapter |1: ASimple TextEditorcooiiiiiiiiiiat, 145
Chapter 12: Extending the Visible Monitor 160
Chapter | 3: Entering the Software Into Your System 163
Appendices:
Al: Hexadecimal Conversion Table oot 171
A2: ASCll Character Codescvvit it iiiniiienenenennn. 172
A3: 6502 Instruction Set — MnemonicList oot 173
A4: 6502 Instruction Set — Opcode Listcovviiiiinnn... 175
AS5: Instruction Execution Timescovvviiiiii i, 178
A6: 6502 Opcodes by Mnemonic and AddressingMode 181
B1: The Ohio Scientific Challenger I-Pol 185
B2: The PET 2000 .. vviititie ittt it it it et eneas 188
Ba: The Apple ll oo i i i 196
B4: The Atari800 e 204
Cl:ScreenUtilities ... oottt it ittt e 211
C2: Visible Monitor (Top Level and Display Subroutines) 223
C3: Visible Monitor (Update Subroutine)ot 233
C4: Print Utilities e er et i it 243
C5: Two Hexdump Tools ..o voviivi ittt i i iii s 257

C6: Table-Driven Disassembler (Top Level and Utility Subroutines) 275

C7: Table-Driven Disassembler (Addressing Mode Subroutinés) 287

C8: Table-Driven Disassembler (Tables)ot 299
CO:Move ULIlItIES o oot ee ittt it i ie ittt ia e 317
C10: Simple Text Editor (Top Level and Display Subroutines) 329
C11: Simple Text Editor (EDITIT Subroutines)ovnnnnn 337
C12: Extending the Visible Monitor oo, 349
C|13: System Data Block for the Ohio Scientific C-1P 355
Cl4: System Data Block for the PET 2001oovvnnt 361
C15: System Data Block forthe Apple Ilo 367
Cl6: System Data Block for the Atari800™.connn 373
DI:Screen ULIlities .. oo vt iv ittt ei i i einsen s 389
D2: Visible Monitor (Top Level and Display Subroutines) 390
D3: Visible Monitor (Update Subroutine)ovvvvienann, 391
D4: Print UtIlties .o v et i ittt it eiennaeenans 392
D5: Two Hexdump Tools . ..o ii it 393
Dé: Table-Driven Disassembler (Top Level and Utility Subroutines) 395
D7: Table-Driven Disassembler (Addressing Mode Subroutines) 396
D8: Table-Driven Disassembler (Tables)c.ooovvnnn 397
D9:Move Utilities . .o v it ittt ii it it iee it 399
D10: Simple Text Editor ... ooviiiiiii e 400
DI |: Extending the Visible Monitoroviiiiiiiiiiann 401
El:Screen Utilities .o vv v enninnienn e, 403
E2: Visible Monitor (Top Level and Display Subroutines) 405
E3: Visible Monitor (Update Subroutines)ot 407
E4: PrintUtilitieso vttt it i e i e it 409
ES: Two Hexdump ToOls ..ot L 411
E6: Table-Driven Disassembler (Top Level and Utility Subroutines) 413
E7: Table-Driven Disassembler (Addressing Mode Subroutine) 415
E8: Table-Driven Disassembler (Tables)c.oooviiiinn. 417
E9: Move Utlities ..o vvvin ittt iin it iian s 419
E10: Simple Text Editor oot 421
El1: Extending the Visible Monitor vt 423
E12: System Data Block for the Ohio Scientific C-IP 424
E13: System Data Block for the PET 2001cooiiininnn. 425
El4: System Data Block for the Apple flt 426
E15: System Data Block for the Atari800 e 427
a0 S R 429

Introduction

Objectives

Sometimes I hear people talk about how smart computers have become. But
computers aren’t smart: programmers are. Programmers make microprocessors act
like calculators, moon landers, or income tax preparers. Programmers must be
smart, because by themselves microprocessors can't do much of anything.

Sound programming, then, is fundamental to successful computer use. With
this principle in mind, this book has two objectives: first, to introduce newcomers to
some of the techniques, terminology, and power of assembly-language program-
ming in general, and of the 6502 in particular; and second, to present a set of soft-
ware tools to use in developing assembly-language programs for the 6502.

Chapter 1 takes you on a quick tour of your computer’s hardware and soft-
ware; Chapters 2 thru 4 comprise a short course in assembly-language programming
for those readers new to the subject. The rest of the book presents source listings,
object code, and assembler listings for programs that you may enter into your com-
puter and run.)

Programmers have long sought to develop small and fast programs with the un-
fortunate result that occasionally code has been written that is unreadable (and even
unworkable) simply because a programmer wanted to save a few bytes or a few
cycles. In certain instances when memory space is particularly tight or execution
time is critical, readability is sacrificed for performance. But today the average pro-
grammer is not forced to make this choice. Of course, all other things being equal, I,
too, value programs that are quick and compact.

But how often are all other things equal?

While developing the programs that appear in this book, I had a number of ob-
jectives, most of them more important than the speed or size of a block of code. I
designed these programs to be:

Useful: No program is presented simply to demonstrate a particular program-

INTRODUGCTION 1

ming technique. All of the programs in this book were written because I needed cer-
tain things done — usually something I didn’t want to be bothered with doing
myself. The monitor monitors, the disassembler disassembles, and the text editor
lets me enter and edit text strings. These programs earn their keep.

Easy to Use: Simply by glancing at the screen you can tell which program is
running and what mode it is in. When a program needs information, it asks you for
it and allows you to correct mistakes you might make while answering. This soft-
ware doesn't require you to remember the addresses of programs or of variables.
Functions are mapped to individual keys, and you can assign functions to keys in
any way that makes sense to you.

Readable: A beginning 6502 programmer should be able to understand the
workings of every program in this book. The labels and comments in the listings
were carefully chosen to reveal the purpose of each variable, subroutine, and line of
code. I am writing first and foremost for you, the reader, not for the 6502.

Portable: The book’s software runs on an Apple II, an Atari 400 or 800, an
Ohio Scientific (OSI) Challenger I-P, or a PET 2001. With proper initialization of
the System Data Block, it should run on any 6502-based computer equipped with a
keyboard and a memory-mapped, character-graphics video display.

Compatible: These routines are very good neighbors. As long as the other soft-
ware in your system does not use the second 4 K bytes of memory (hexadecimal
memory locations 1000 thru 1FFF), there should be no conflict between your soft-
ware and the software in this book. In particular, most of the software in this book
preserves the zero page, so your software may use the zero page as much as you like,
and you won't be bothered with having to save and restore it before and after calls
to the software presented herein.

Expandable: The programs in this book are highly modular, and you may ex-
tend or restructure them to meet your individual needs. System-specific subroutines
are called indirectly, so that other subroutines may be substituted for them, and
most values are treated as variables, rather than as constants hard-wired into the
code. There are no monolithic programs in this book; they’re all subroutines and
may be combined in many ways to build powerful new structures.

Compact: [know that every personal computer has exactly the same available
memory: too little, I also know ways to write a program in ten or twenty percent
less space. But if doing so required sacrificing readability, portability, or expand-
ability, I did not do so. In many cases I feared that to save a byte, I might lose a
reader’s clear understanding of how a program works. I considered that too great a
price to pay for a somewhat smaller program.

Fast: Assuming that the above objectives have been met, the software in this
book has been developed to operate as quickly as possible. But in any trade-off be-
tween speed and the other objectives, speed loses. A fast program that you can't
understand holds little value. None of the programs in this book are likely to make
you complain about how long you have to wait. I can't tell if I'm waiting an extra
millisecond. Can you?

So go ahead. Read. Program, Enjoy!

N ODCVAND NAMESQ

Chapter |:
Your Computer

The software in this book can run on a number of computers because it assumes
very little about the host machine. Let’s examine these assumptions and in so doing
take a quick tour of your computer.

The 6502 Microprocessor

We'll start with the 6502 microprocessor, the component in your system that
actually computes. By itself, the 6502 can’t do much. It has three registers (special
memory areas for storing the data upon which the program is operating), called A,
X, and Y, which can each hold a number in the range of 0 to 255. Different registers
have different capabilities. For example, if a number is in A (the accumulator), the
6502 can add to it, or subtract from it, any value up to 255. But if a number is in the
X register or the Y register, the 6502 can only increment or decrement that number
(ie: add or subtract one from it).

The 6502 can also set one register equal to the value of another register, and it
can store the contents of any register anywhere in memory, or load any register
from any location in memory. Thus, although the 6502 can only operate on one
number at a time, it can operate on many numbers, just by loading registers from
various locations in memory, operating on the registers, and then storing the results
of those operations back into memory.

Types of Memory

You may have heard that a computer stores information as a series of ones and

YOUR COMPUTER 3

zeros. This is because the computer’s memory is simply an elaborate array of
switches, and an individual switch can have only two states: closed or open. These
two states may also be expressed as on and off, or as one and zero.

Not all memory switches are the same. Some, in what is called ROM (read-only
memory), are hard-wired into your computer’s circuitry and cannot be changed ex-
cept by physically replacing the ROM circuits containing those switches. Others, in
what is called RAM (random-access memory) or programmable memory, can be
changed by the processor. The 6502 can open or close any of the switches, called bits
(binary digits), in its programmable memory, and later on read what it “wrote” into
that memory. Figure 1.1 shows how the processor has access to read-only memory
and programmable memory.

READ - ONLY
6502 < MEMORY

\

PROGRAMMABLE
MEMORY

Figure 1.1: How the 6502 interacts with memory. The arrows indicate the flow of data.

A third kind of memory is set by some external device, not by the 6502. Such
memory switches are called input ports, and may be connected to keyboards, ter-
minals, burglar alarms — virtually anything that can generate an electrical signal.
The 6502 perceives these externally generated signals by reading the appropriate in-
put ports.

Yet another kind of memory switch, called an output port, generates a high ora
low voltage on some particular wire depending on whether the 6502 sets a given
memory switch to a one or a zero. One or more of these output ports can enable the
6502 to “talk” to the outside world.

Now don't jump up and think I'm going to show you how to synthesize speech
in this book. “Talk” is just my way of anthropomorphizing the 6502. It will happen
elsewhere in this book, when the 6502 “sees,” “remembers,” and “knows” what to
do. Of course the 6502 doesn't see, remember, or know anything, but I often find it
helpful to put myself in its place. That way I can better understand how a program
will run, or why a program doesn't run, and I do see, remember, and know things.

But don't take such verbs too literally. The 6502 doesn't talk. It causes signals to
be generated that may be sensed by other devices, such as cassette recorders,
printers, disk drives — and yes, even speech synthesizers. But not in this book.

Some peripheral devices are actually connected to both an input and an output
port. Examples of these devices are cassette tape machines and floppy-disk drives,

4 BEYOND GAMES

which are mass-storage or secondary-storage devices. Figure 1.2 summarizes the
processor’s access to memory and to peripheral devices.

PERIPHERALS MEMORY PROCESSOR
VIDEO DISPLAY [
OUTPUT
PORTS -
6502
CASSETTE
RECORDER
INPUT PORTS
P
READ-ONLY
MEMORY
MAIN MEMORY
PROGRAMMABLE
MEMORY
.

Figure 1.2: A summary of the 6502 microprocessor’s access to data in main memory and
through I/O (input and output) ports. The arrows indicate the flow of data.

A video screen connected to your computer looks like memory to the 6502, so
the 6502 can read from and write to the screen. The keyboard is scanned by I/O (in-
put/output) ports that are decoded to look like any other programmable memory

YOUR COMPUTER &

address, so the 6502 can look at the keyboard just by looking at a particular place in
memory. Thus, the 6502 can interact directly with memory only, but because all
I/0 devices are mapped to addresses in memory, the 6502 can interact with the user,

See figure 1.3,
SCREEN

MEMORY 6502
KEYBOARD —_—

Figure 1.3: How the 6502 interacts with the user. Arrows indicate the flow of data.

The Operating System

Thus far we have discussed your machine’s hardware. But the Apple, Atari
OSI, and PET computers feature more than hardware. For example, all these com-
puters have an operating system (stored in ROM) which includes the I/O software
routines that are needed to use the screen and the keyboard. We are not particularly
concerned with how these subroutines work, but I assume your system does have
such routines,

There are many other subroutines in your computer’s operating system. Your
system'’s documentation should tell you what subroutines are available and provide
their addresses. All of this means power for you, the programmer. The more you
know about your computer, the more you can make it do. Because the software in
this book was developed to run on a number of systems, I chose not to use routines
available in your machine’s ROM, no matter how powerful they might be, unless I
could be sure that they would be available in the operating systems of the Apple, the
Atari, the OSI, and the PET computers. In other words, the software in this book
does not take full advantage of the power in your operating system. But the software
you write, which need only run on your system, should exploit to the fullest the
power of your computer's ROM routines,

6 BEYOND GAMES

BASIC

One of the most important features of your computer is the BASIC interpreter
in ROM. This interpreter is a program that enables your computer to understand
commands given in BASIC. Your system’s documentation should tell you what
commands are legal in the particular dialect of BASIC implemented on your
machine. BASIC is an easy language to learn and you can do a lot with it.

Unfortunately, not every dialect of BASIC is the same. A program written in
BASIC that runs on machine A may not run on machine B. BASIC is a common
language, but not a standard one. Is there any language that is standard from
system to system?

6502 Code

The central processor is the computer’s heart. The Apple, Atari, OSI, and PET
computers all use the 6502 microprocessor. Every microprocessor has a certain in-
struction set, or group of instructions, which the microprocessor can execute. These
instructions are at a much lower level than the BASIC commands with which you
may be familiar. For example, in BASIC you can have a single line in a program to
PRINT “HELLO.” It would take a sequence of many 6502 instructions to perform
the same function.

However, a sequence of microprocessor instructions will run on any computer
featuring that microprocessor. Thus, if you write a program consisting of 6502 in-
structions to perform some function, that program should run on any 6502-based
computer. It won't run on an 8080-based computer, a Z80-based computer, or a
6800-based computer, but it should run on an Apple, a PET, an Atari, an OS], or
any other system built around a 6502. 6502 programs can also run much faster than
equivalent programs written in BASIC and can be smaller than BASIC programs.
The programs presented in this book are all written in 6502 code, and require only
half of the memory available on a computer containing 8,000 bytes of program-
mable memory, thus leaving more than enough room for your own programs.

YOUR COMPUTER 7

Chapter 2:
Introduction to Assembler

Ever watch a juggler or a good juggling team? The balls, pins, or whatever are
in the air in such intricate patterns that you can hardly follow them, let alone
duplicate the performance yourself. It's beautiful, but not magic; just an application
of some simple rules. I've learned to juggle recently, and although I'm still a rank
beginner, I've taught my two hands to keep three balls moving through the air. Yet
neither hand knows very much. A hand will toss a ball into the air, and then it will
catch a ball. The other hand will toss a ball into the air, and then it will catch a ball.
That'’s all. My hands perform only two operations: toss and catch. Yet with those
two primitive operations I can put on a pleasant little performance.

Assembly-language programming is not so different from juggling. Like jug-
gling, programming enables you to put on an impressive or baffling performance. In
its simplest terms, juggling is nothing more than taking something from one place
and putting it someplace else. The same thing is true of the central processor: the
6502 takes something from one place and puts it someplace else.

In fact, programming the 6502 is easier than juggling in several ways. First, the
6502 is obviously much faster than even the most skillful juggler. In the time it takes
me to pick up a ball with one hand and place that ball somewhere else, the 6502 can
get something from one place and put it someplace else hundreds of thousands of
times. Sleight of hand requires quickness, and the 6502 is quick.

The 6502 even gives me a helping hand. When I try to juggle, I must keep the
balls moving with nothing but my two hands. But my home computer has three
hands (registers A, X, and Y in the 6502) and thousands of pockets (8,000 bytes or
more of programmable memory).

A byte is 8 bits of data that may be loaded together into a register. A register
holds 1 byte. Each location in memory holds 1 byte. The 6502 can affect only 1 byte
in one operation. But because the 6502 can perform hundreds of thousands of opera-

8 BEYOND GAMES

tions each second, it can affect hundreds of thousands of bytes each second.

Binary

In the final analysis, any value is stored within the computer as a series of bits,
If we wish, we may specify a byte by its bit pattern: such a representation uses only
ones and zeroes, and is called binary. For example, the number 25 in binary is
00011001.

In binary, each bit indicates the presence or absence of some value. Each bit
represents twice as much value, or significance, as the bit to its right, so the right-
most bit is the least significant, and the left-most bit is the most significant. Table 2.1
gives the significance of each bit in an 8-bit byte:

S

Table 2.1: Bit significance in an 8-bit byte,

Bit Number: b7 b6 b5 b4 b3 b2 bl bo
Bit Significance: 128 64 32 16 8 4 2 1

The right-most bit (called bit 0) tells us whether we have a one in our byte. The
bit to its left (bit 1) tells us whether we have a two; the bit to its left tells us whether
we have a four...and the leftmost bit (bit 7) tells us whether we have a 128 in our
byte.

To determine the bit pattern for a given value — say, 25 — determine first what
powers of two must be added to equal your value. For instance, 25 = 16 + 8 + 1,
s0 25 in binary is 00011001. »

Twenty-five can be expressed in other ways as well. Rather than specify every
number as a pattern of eight ones and zeros, we often express numbers in hexa-
decimal representation.

Hexadecimal

Unlike binary, which requires a group of eight characters to represent an 8-bit
value, hexadecimal notation allows us to represent an 8-bit value with a group of
only two characters. These characters are not limited to 0 and 1, but may include
any digit from 0 to 9, and any letter from “A” to “F.” That gives us a set of sixteen
characters, which is just right because we want to represent numbers in base 16.

INTRODUCTION TO ASSEMBLER 9

(Hexadecimal stands for 16: hex for six, and decimal for ten. Six plus ten equals six-
teen.)

To represent a byte in hexadecimal notation, divide the 8-bit byte into two 4-bit
units (sometimes called nybbles). Each of these 4-bit units has a value of from 0 to 15
(decimal), which we express with a single hexadecimal digit. A decimal 10 is a hexa-
decimal $A. (The dollar sign indicates that a number is in hexadecimal representa-
tion.) Table 2.2 gives the conversions of decimal to hexadecimal for decimal
numbers 0 thru 15.

Table 2.2: Hexadecimal character set,

Hexadecimal Character Decimal Equivalent
$0 = 0
$1 = 1
$2 = 2
$3 = 3
$4 = 4
$5 = 5
$6 = 6
$7 = 7
$8 = 8
$9 = 9
$A = 10
$B = 11 ;
$C = 12
$D = 13
$E = 14
$F = 15

Appendix Al, Hexadecimal Conversion Table, shows the hexadecimal
representation of every number from 0 to 255 decimal.

In this book, object code, the only code that the machine can execute directly,
will generally be presented in hexadecimal, and a thorough understanding of hexa-
decimal will help you to interpret instructions and follow some of the 6502’s actions.
Even the sketchiest understanding of hexadecimal math, however, should be suffi-
cient for you to follow and use the programs in this book.

10 BEYOND GAMES

ASCII Characters

Instead of a number from O to 255, an 8-bit byte can be used to represent an up-
per or lower case letter of the alphabet, a punctuation mark, or a printer-control
character such as a carriage return. A string of such bytes may represent a word, a
message, or even a complete document. Appendix A2, ASCII Character Codes,
gives the hexadecimal value for any ASCII character. ASCII stands for American
Standard Code for Information Interchange, and is the closest thing the industry has
to a standard set of character codes. If you want to store the letter “A” in some loca-
tion in memory, you can see from Appendix A2 that you must store a $41 in that
location,

Whether a given byte is interpreted as a number, an ASCII character, or
something else depends entirely on the program using that byte. Just as beauty is in
the eye and mind of the beholder, so is the meaning of a given byte determined by
the program that sees and uses it.

The Instruction Cycle

A microprocessor such as the 6502 can’t do anything without being told. It only
knows 151 instructions, called opcodes (operation codes). Each opcode is 1 byte
long. An opcode may command the 6502 to take something from one register and to
put it someplace in memory, to load some register with the contents of some loca-
tion in memory, or to perform some other equally simple operation. See Appendix
A4 for a list of opcodes for the 6502 microprocessor.

What do 6502s do all day? They work while programmers play. The 6502 gets
an opcode, performs the specified operation, gets the next opcode, performs the
specified operation, gets the next opcode, performs the...

You get the picture. '

How does the 6502 know where to find the next opcode? The 6502 has a 16-bit
register called the PC (program counter). The PC holds the address of some location
in memory. When the 6502 starts its instruction cycle, it gets the opcode stored at
the memory location specified by the PC. Then it performs the operation specified
by that opcode. When it has executed that instruction, it makes the PC point to the
next opcode and starts on a new instruction cycle by getting the opcode whose ad-
dress is now in the PC.

Figure 2.1 shows a flowchart for the instruction cycle of the 6502
microprocessor.

“That's it? That's all the 6502 does?” you ask.

That's it. But with the right program in memory, we can make the 6502 dance.

INTRODUCTION TO ASSEMBLER 11

l

FETCH OPCODE
POINTED TO BY THE
PROGRAM COUNTER

PERFORM OPERATION
SPECIFIED BY THAT
OPCODE

MAKE PROGRAM
COUNTER POINT
TO NEXT OPCODE
IN MEMORY

|

Figure 2.1: The 6502 instruction cycle.

Machine Language

A machine-language program is nothing more than a series of machine-
language instructions stored in memory. If the PC in the 6502 can be made to hold
the address of the start of your program, then we say that the PC is pointing to your
program. When the 6502 starts its instruction cycle, it will fetch the first opcode in
your program, and then perform the operation specified by that opcode. At this
point, we say that your program is running.

Each machine-language instruction is stored in memory as a 1-byte opcode,
which may be followed by 1 or 2 bytes of operand. Thus, a 6502 machine-language
program might be “A9 05 20 02 04 A2 F5 60.”

Just a bunch of numbers! (Hexadecimal numbers, in this case.) But it is exactly
these numbers that the machine understands; hence the term, machine language.

Assemblers

Machine language is easy to read — if you're a machine. But programmers are
people. So programming tools called assemblers have been developed, which take
more readable assembly-language source code as input and produce listings and ob-
ject code as output. The listing is the assembler’s output intended for a human
reader. The object code is a series of 6502 machine-language instructions intended to
be stored in memory and executed by the 6502.

12 BEYOND GAMES

For each chapter in this book that presents a program, there is an appendix at
the back of the book containing an assembler listing and a hexdump of the same pro-
gram. The assembler listing includes both source and object code, making it easy for
you to read the program; the hexdump shows you what the object code for that pro-
gram actually looks like in your computer’s memory. Figure 2.2 shows how an
assembler is used to produce an assembler listing for the programmer and object
code for the processor.

SOURCE OF INPUT: PROGRAMMER
INPUT: ASSEMBLER SOURCE CODE

(MAY CONTAIN COMMENTS)

PROGRAM: ASSEMBLER

) ASSEMBLER ASSEMBLER
OUTPUT: LISTING OBJECT CODE
INTENDED FOR: PROGRAMMER 6502

Figure 2.2: From programmer to object code. The assembler takes source code as input and
produces an assembler listing and object code as output.

The programs in this book have all been produced on the OSI 6500
Assembler/Editor, running under the OSI 65-D Disk Operating System, on an OSI
C-IP machine with 24 K bytes of programmable memory and one 5-inch floppy
disk. It is likely that the source code presented in this book will assemble immedi-
ately or with only minor modification on other 6500 assemblers. (Incidentally, the
source code in each chapter of this book should fit into the workspace of a computer
with much less than 24 K bytes of user memory, if you delete many of the com-
ments. But then, of course, your listings will be a lot less readable.)

But you don't write a listing; an assembler produces a listing. What you write is
assembly-language source code.

Source Code

An assembly-language source program consists of one or more lines of

INTRODUCTION TO ASSEMBLER 13

assembly-language source code. A line of assembly-language source code consists of
up to four fields:

LABEL MNEMONIC OPERAND COMMENT

The mnemonic, required in all cases, is a group of three letters chosen to suggest
the function of a given machine-language instruction. For example, the mnemonic
LDA stands for LoaD Accumulator. LDX stands for LoaD X register. TXA means
Transfer the X register to the Accumulator. 6502 mnemonics are not nearly as mean-
ingful as BASIC commands, but they're a big improvement over the machine-
language opcodes. See Appendix A3 for a list of 6502 mnemonics.

Some operations require an operand field. For example, the operation load ac-
cumulator requires an operand, because the line of source code must specify what
you wish to load into the accumulator.

The label and comment fields are optional. A label lets you operate on some
location in memory by a name that you have assigned to it. Comments are not in-
cluded in the object code that will be assembled from your program, but they make
your source code and your listings much more meaningful to a human reader. When
you write a program, even if no one but yourself will ever read it, try to choose your
labels and comments so that someone else can understand the purpose of each part
of the program. Such careful documentation will save you a lot of time weeks or
months down the road, when you might otherwise reread your program and have
no idea why you included some unlabeled, uncommented line of source code.

Loading a Register

Let's write a simple program to load a register with a number — say, to load the
accumulator with the number “10.” Since we want to load the accumulator, we'll use
the LDA instruction. (If we wanted to load the X register, we would use the LDX in-
struction, and if we wanted to load the Y register, we'd use LDY.) We know what
mnemonic to write into our first line of source code. But a glance at Appendix A6,
6502 Opcodes by Mnemonic and Addressing Mode, shows that LDA has many ad-
dressing modes. What operand shall we write into this line of source code?

We know that we want to load the accumulator with a “10,” and not with any
other number, so we can use the immediate addressing mode to load a “10” directly
into the accumulator. We'll use a “#” sign to indicate the immediate mode;

Example |

LDA #10

14 BEYOND GAMES

Example 1 is a legitimate line of source code containing only two fields: a
mnemonic and an operand. The mnemonic, LDA, means “load the accumulator.”
But load it with what? The operand tells us what to load into the accumulator. The
“4" sign specifies that this operation is to take place in the immediate mode, which
means we want to load the accumulator with a constant to be found in this line of
source code, rather than with data or a variable to be found in some location in
memory. Then the operand specifies the constant to be loaded into the accumulator,
in this case “10.”

Constants

A constant is any value that is known by the programmer and “hard-wired” in-
to the code. A constant does not change during the execution of a program. If a
value changes during the execution of a program, then it is a variable, and one or
more memory locations must be allocated to hold the current value of each variable.

There are several kinds of constants. Any number is a constant. The number
“7 " for example, is a constant: a seven now will still be a seven this afternoon. A
character is another kind of constant: the letter “A” will still be the letter “A” tomor-
row. But a variable, such as one called FUEL, will change during the course of a pro-
gram (such as a lunar lander simulation), so it is not a constant.

In Example 1, note that the “#” sign is the only punctuation in the operand field.
In the absence of special punctuation marks (such as the dollar sign indicating a
hexadecimal number and the apostrophe indicating an ASCII character representa-
tion), any numbers given in this book are in decimal.

What object code will be assembled from this line of source code? Let’s hand-
assemble it and see. Appendix A6 shows us that the opcode for load accumulator,
immediate mode, is $A9. So the first byte of object code for this instruction will be
$A9. The second byte must specify what the 6502 should load into the accumulator.
We want to load register A with a decimal 10, which is $0A. So the object code
assembled from Example 1 is: A9 0A.

When these 2 bytes of object code are executed by the 6502, it will result in the
accumulator holding a value of $0A, or decimal 10. In effect, we've just told a jug-
gler: put a “10” in your right hand.

What if we wanted to load the accumulator with the letter “M,"” rather than
with a number? We'd still use LDA to load the accumulator, and we'd still use the
immediate mode of addressing, specifying in the operand the constant to be loaded
into the accumulator. Either of the following two lines of source code will work:

INTRODUCTION TO ASSEMBLER 15

Example 2
LDA # M
or

LDA #$4D

In each line of source code above, the mnemonic and the “4” sign tell us we're
loading the accumulator in the immediate mode — ie: with a constant. The operand
following the “#” sign specifies the constant. An apostrophe indicates that an ASCII
character follows, whereas a “$” sign indicates that a hexadecimal number follows.
Appendix A2 shows that an ASCII “M" = $4D; they are simply two representations
of the same bit pattern. So the two lines of source code above are equivalent; they
will both assemble into the same object code: A9 4D.

Which of the two lines of source code is more readable? If a constant will be
used in a program as an ASCII character, then represent it in your source code as an
ASCII character.

Storing the Register

Now let’s say we want to store the contents of the accumulator someplace in
memory. Every location in memory has a unique address (just like houses do), rang-
ing from $0000 to $FFFF. Suppose we decide to store the contents of the accumulator
at memory location $020C. We could do it with the following line of source code:

Example 3

STA $020C

Example 3 will assemble into these 3 bytes of machine language: 8D 0C 02.

According to the Appendix A6, the 6502 opcode for “store accumulator, ab-
solute mode” (STA) is $8D.

When the 6502 fetches the opcode “8D,” it knows that it must store the contents
of the accumulator at the address specified by the next 2 bytes. This is why it is
called absolute mode. Absolute mode is used when specifying an exact memory

location in an instruction.
In the example above, that address seems wrong. It looks like the machine-

language operand is specifying address $0C02, because the bytes are in that order:
“0C” followed by “02.” But we want to operate an address $020C. Is something
wrong here?

16 BEYOND GAMES

Low Byte First

You and I might think something is wrong when the address $020C is written as
an “0C" followed by an “02" but you and I are people. We don't think like the 6502.
When you and I write a number, we tend to write the most significant digit first and
the least significant digit last. But the 6502 doesn’t work that way. When the 6502 in-
terprets two sequential bytes as an address, the first byte must contain the less
significant part of the address (the “low byte”), and the second byte must contain the
more significant part of the address (the “high byte”). All addressing modes that re-
quire a 2-byte operand require that the 2 bytes be in this order: less significant byte
first, followed by the more significant byte.

However, not all addressing modes require a 2-byte operand.

Zero-Page Addressing

Memory is divided into pages, where a page is a block of 256 contiguous ad-
dresses. The page from $0000 to $0OFF is called the zero page, because all addresses
in this page have a high byte of zero. The zero-page addressing mode takes advan-
tage of this fact. Source code assembled using the zero-page addressing mode re-
quires only 1 byte in the operand, because the opcode specifies the zero page mode
of addressing, and the high byte of the operand is unnecessary because it is
understood to be zero. Thus, you can specify an address in the zero page by the ab-
solute or by the zero-page addressing mode, but the zero-page mode will let you do
it using one less byte.

If you want to use some location in the zero page to hold a number, you might
decide to use location $00F4. We could write:

Example 4
STA $00F4
or

STA $F4

We could then assemble either line of source code using the absolute addressing
mode: 8D F4 00. Or we could assemble either line of source code using the zero-
page mode: 85 F4.

The opcode “85” means “store accumulator, zero page.” Where in the zero
page? At location $F4 in the zero page, the same location whose absolute address is
$OOF4.

INTRODUCTION TO ASSEMBLER 17

Symbolic Expressions

Let's say you want to copy the 3 bytes at memory locations $0200, $0201, and
$0202 to $0300, $0301, and $0302, respectively. We could write these lines of source
code:

Example 5

LDA $0200
STA $0300
LDA $0201
STA $0301
LDA $0202
STA $0302

This alternately loads a byte into the accumulator, then stores the contents of the ac-
cumulator into another byte in memory. Note that loading a register from a location
in memory changes the register, but leaves the contents of the memory location un-
changed.

Or we could write the following code, which refers to addresses as symbolic ex-

pressions:

Example 6

ORIGIN = $0200
DEST = $0300
LDA ORIGIN
STA DEST

LDA ORIGIN +1
STA DEST +1
LDA ORIGIN + 2
STA DEST + 2

OO W

In Example 6, lines 1 and 2 are assembler directives, which equate the labels
“ORIGIN” and “DEST” with the addresses $0200 and $0300, respectively. Other
lines of source code following these equates may then refer to these addresses by
their labels, or refer to any address as a symbolic expression consisting of labels and,
optionally, constants and arithmetic operators. The source code above will cause an
assembler to generate exactly the same object code as the source code in Example 5,
but Example 6, whose operands consist of symbolic expressions, is much more

18 BEYOND GAMES

readable than Example 5, whose operands are given in hexadecimal.

Some Exercises

1) Write the 6502 instructions necessary to load the accumulator with the value
127, to load the X register with the letter “r,” and to load the Y register with the con-
tents of address $BO92.

2) Write the 6502 instructions necessary to copy the byte at address $0043 to the
address $0092.

INTRODUCTION TO ASSEMBLER 19

Chapter 3:

Loops and Subroutines

Indexed Addressing

Although readable, Example 6 is not very efficient, because it requires two lines
of source code to move each byte. If we want to move 50 or 100 bytes must we then
write 100 or 200 lines of source code?

Indexed addressing comes in quite handily here. Instead of specifying the ab-
solute or zero-page address on which an operation is to be performed, we can
specify a base address and an index register. The 6502 will add the value of the
specified index registers to the base address, thereby determining the address on
which the operation is to be performed. Thus, if we want to move 9 bytes from an
origin to a destination, we could do it in the following manner, using the indexed ad-
dressing mode with X as the index register:

INIT

GET
PUT

ADJUST

20 BEYOND GAMES

ORIGIN = $0200
DEST = $0300

LDX #0

LDA ORIGIN, X
STA DEST, X

INX

Example 7

Initialize X register to zero, so we'll start
with the first byte in the block.

Get Xth byte in origin block.

Put it into the Xth position in the
destination block.

Adjust X for next byte by incrementing
(adding 1) to the X register.

TEST CPX #9 Done 9 bytes yet?
BRANCH BNE GET If not, go back and get next byte...

We will use Example 7 in the following sections to introduce several new in-
structions and addressing modes. Example 7 includes six lines of source code to
move 9 contiguous bytes of data. If we tried to move 9 bytes of data with the tech-
niques used in Examples 5 and 6, it would have taken eighteen lines of source code.
So with indexed addressing, we've saved ourselves twelve lines of code. But how do
these lines work? The lines are labeled so we can look at them one-by-one.

The instruction labeled INIT loads the X register in the immediate mode with
the value zero. After executing the line INIT, the 6502 has a value of zero in the X
register. We don't know anything about what's in the other registers.

GET loads the accumulator with the Xth byte above the address labeled
ORIGIN. The first time the 6502 encounters this line, the X register will hold a value
of zero, so the 6502 will load the accumulator with the zeroth byte above the address
labeled ORIGIN (ie: it will load the accumulator with the contents of the memory
location ORIGIN).

In any line of source code, a comma in the operand indicates that the operation
to be performed shall use an indexed addressing mode. A comma followed by an “X”
indicates that the X register will be the index register for an instruction, whereas a
comma followed by a “Y” indicates that the Y register will be the index for an in-
struction. There are a number of indexed addressing modes. Two of these are ab-
solute indexed and zero-page indexed. The line GET in Example 7 uses the absolute
indexed addressing mode if ORIGIN is above the zero page; if ORIGIN is in the zero
page then the line labeled GET can be assembled using the zero-page indexed ad-
dressing mode. Zero-page indexed addressing, like zero-page addressing, requires
only 1 byte in the operand.

In zero-page indexed and in absolute indexed addressing, the operand field
specifies a base address. The 6502 will operate on an address it determines by adding
to the base address the value of the specified index register (X or Y). Only if the
specified index register has a value of zero will the 6502 operate on the base address
itself; in all other cases the 6502 will operate on some address higher in memory.

So we've loaded the accumulator with the byte at ORIGIN. Now the 6502
reaches the line labeled PUT in Example 7. This line tells the 6502 to store the ac-
cumulator in the Xth byte above DEST. We haven't done anything to change X since
the line INIT set it to zero, so X still holds a value of zero. Therefore, the 6502 will
store the contents of the accumulator in the zeroth byte above DEST (je: in DEST
itself).

At this point, we have succeeded in moving 1 byte from ORIGIN to DEST. X is
still zero. Now comes the part that makes indexing worthwhile. The line labeled
ADJUST is the shortest line of source code we've seen yet, consisting only of the
mnemonic INX, which means “increment the X register.” Since the X register was
zero, when this line is executed the X register will be left holding a value of one.

LOOPS AND SUBROUTINES 21

Compare Register

In Example 7, the line labeled TEST compares the value in the X register with
the number “9.” There are three compare instructions for the 6502, one for each
register. CMP compares a value with the contents of the accumulator; CPX com-
pares a value with the contents of the X register, and CPY compares a value with the
contents of the Y register.

We can use these compare instructions to compare any register with any value
in memory, or, in the immediate mode, to compare any register with any constant.
Such comparisons enable us to test for given conditions. For example, in Example 7,
the line labeled TEST tests to see if we've moved 9 bytes yet. If the X register holds
the value “9,” then we have moved 9 bytes, (Walk through the loop yourself. When
you have moved the zeroth through the eighth bytes above ORIGIN to the zeroth
through the eighth positions above DEST, then you have moved 9 bytes.)

A compare instruction never changes the contents of a register or of any loca-
tion in memory. Thus, the X register does not change when the line labeled TEST is
executed by the 6502. What may change, however, are some of the 6502's status
flags.

Status Flags

In addition to the 6502's general-purpose registers (A, X, and Y), the 6502 con-
tains a special register P, the processor status register, Individual bits in the pro-
cessor status register are set or cleared each time the 6502 performs certain opera-
tions. These bits, or hardware flags, are:

bit 0: Carry Flag

bit 1: Zero Flag

bit 2: Interrupt Flag
bit 3: Decimal Flag
bit 4: Break Flag

bit 5: Undefined

bit 6: Overflow Flag
bit 7: Negative Flag

Z< WOTNO

In this book, we will not discuss the use of all the flags in the processor status
register. In this quick course in assembly-language programming, and in the soft-
ware subsequently presented in this book, the three flags we will deal with are C, the

22 RFYOND GAMES

carry flag; Z, the zero flag; and N, the negative flag.

A compare operation (CMP, CPX, or CPY) does not change the value of
registers A, X, or Y, but it does affect the carry, zero, and negative flags.

For example, if a register is compared with an equal value, the zero flag, Z, will
be set; otherwise, Z will be cleared. If an instruction sets bit 7 of a register or an ad-
dress, the negative flag of the status register will also be set; conversely, if an instruc-
tion clears bit 7 of a register or an address, the negative flag will be cleared. Similar-
ly, mathematical and logical operations set or clear the carry flag, which acts as a
ninth bit in all arithmetic and logical operations. Table 3.1 summarizes the effects of
a compare instruction on the status flags.

Table 3.1: Status flags affected by compare instructions. Note that if you wish to test the
status of the carry flag after a compare, you must set it (using the instruction SEC) before
the compare. When testing the N flag, think of the inputs as signed 8-bit values.

Carry Flag* Negative Flag Zero Flag

Compare a register

with an equal value and you set C, clear N, and set Z.
Compare a register \
with a greater value and you clear C, clear N, and clear Z.
Compare a register

with a lesser value and you set C, clear N, and clear Z.

Conditional Branching

We can have a program take one action or another, depending on the state of a
given flag. For example, two instructions, BEQ, (Branch on result EQual) and BNE
(Branch on result Not Equal) cause the 6502 to branch, or jump to a new instruction,
based on the state of the zero flag. An instruction which causes the 6502 to branch
based on the state of a flag is called a conditional branch instruction. Other condi-
tional branch instructions are based on the state of other status flags and are given in
table 3.2.

*If you wish to test the status of the carry flag after a compare, you must set it (using
the instruction SEC) before the compare.

LOOPS AND SUBRCUTINES 23

Table 3.2: Conditional branch instructions.

Flag Instruction Description Opcode
C BCC Branch if carry clear. 90
C BCS Branch if carry set. : BO
N BPL Branch if result positive. 10
N BMI Branch if result negative. 30
VA BEQ Branch if result equal.

(Zero Flag set). FO
z BNE Branch if result not equal.

(Zero flag clear.) Do
A" BVC Branch if overflow flag clear. 50
A% BVS Branch if overflow flag set. 70

The line labeled TEST in Example 7 compares the X register to the value “9;”
this sets or clears the zero flag. The line labeled BRANCH then takes advantage of
the state of the zero flag, by branching back to the line labeled GET if the result of
that comparison was not equal. But if Y did equal “9,” then the result of the com-
parison would have been equal, and the 6502 would not branch back to GET. In-
stead, the 6502 would execute the instruction following the line labeled BRANCH.

Loops

Example 7 shows a program loop. We cause the 6502 to perform a certain
operation many times, by initializing and then incrementing a counter, and testing
the counter each time through the loop to see if the job is done.

There’s a lot of power in loops. What would we have to add or change in
Example 7 so that it moves not 9, but 90 bytes from one place to another? Happily,
we wouldn't have to add anything, and we'd only have to change the operand in the
line labeled TEST. Instead of comparing the X register with 9, we'd compare it with
90. See Example 8.

Example 8
Move 90 bytes from origin to destination.

ORIGIN = $0200
DEST = $0300

24 BEYOND GAMES

INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.

GET LDA ORIGIN, X Get Xth byte in origin block.

PUT STA DEST,X Put it into the Xth position in the
destination block.

ADJUST INX Adjust X for next byte.

TEST CPX #90 Done 90 bytes yet?

BRANCH BNE GET If not, get next byte...

Writing loops lets us write code that is not only compact, but easily tailored to
meet the demands of a particular application. We couldn’t do that, however,
without indexing and branching.

Loops can be tricky, though. What's wrong with this loop?

Example 9
ORIGIN = $0200
DEST = $0300
INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.
GET . LDA ORIGIN, X Get Xth byte in origin block.
PUT STA DEST,X Put it into the Xth position in the
destination block.
TEST CPX #9 Done 9 bytes yet?
BRANCH BNE GET If not, get next byte...

Examine Example 9 very carefully. How does it differ from Example 77 It lacks
the line labeled ADJUST, which increments the X register. What will happen when
the 6502 executes the code in Example 97 It will initialize X to zero; it will get a byte
from ORIGIN and move it to DEST. Then it will compare the contents of register X
to 9. Register X won't equal 9, so it will branch back to GET, where it will do exactly
what it did the first time through the loop, because X will still equal zero. Until the X
register equals 9, the 6502 will branch back to GET. But nothing in this loop will
ever change the value of X! So the 6502 will sit in this loop forever, getting a byte
from ORIGIN and putting it in DEST and determining that the X register does not
hold a 9...

Now look at Example 10. Will it cause the 6502 to loop, and if so, will the 6502
ever exit from the loop? Why, or why not?

LOOPS AND SUBROUTINES 25

Example 10

ORIGIN = $0200
DEST = $0300

INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.

GET LDA ORIGIN,X Get Xth byte in origin block.

PUT STA DEST,X Put it into the Xth position in the
destination block.

ADJUST INX Adjust X for next byte,

TEST CPX #9 Done 9 bytes yet?

BRANCH BNEINIT If not, get next byte...

Relative Addressing

All conditional branch instructions use the relative addressing mode, and they
are the only instructions to use this addressing mode. Like the zero page and zero-
page indexed addressing mode, the relative addressing mode requires only a 1-byte
operand. This operand specifies the relative location of the opcode to which the 6502
will branch if the status register satisfies the condition required by the branch in-
struction. A relative location of 04 means the 6502 should branch to an opcode 4
bytes beyond the next opcode, if the given condition is satisfied. Otherwise, the 6502
will proceed to the next opcode.

Because the operand in a conditional branch instruction is only 1 byte, it is not
possible for a conditional branch instruction to cause a branch more than 127 bytes
forward or 128 bytes backward from the current value of the program counter. (A
branch backward is indicated if the relative address specified is negative; forward if
it's positive. A byte is negative if bit 7 is set. A byte is positive if bit 7 is clear. Thus,
a value of 00 is considered positive.) However, an instruction called JMP allows the
programmer to specify an unconditional branch to any location in memory.
Therefore, if we have a short conditional branch followed by an unconditional
jump, we may achieve in two instructions a conditional branch to any location in
memory.

Unconditional Branch

Just as BASIC has its GOTO command, which causes an unconditional branch
to a specified line in a BASIC program, the 6502 has its JMP instruction, which un-

26 BEYOND GAMES

conditionally branches to a specified address. A program may loop forever by
JMP'ing back to its starting point.

Look at Example 11. Unless a line of code within the loop causes the 6502 to
branch to a location outside of the loop, the 6502 will sit in this loop forever.

Example 11
Endless Loop:
START xXxXXXXXXXXX some
XXXXXXXXXX instructions
XXXXXXXXXX
JMP START
Indirect Addressing

A JMP instruction may be written in either the absolute addressing mode or the
indirect addressing mode. Absolute addressing is used in Example 11. The operand is
the address to which the 6502 should jump. But in the indirect mode (which is
always signified by parentheses in the operand field) the operand specifies the ad-
dress of a pointer. The 6502 will jump to the address specified by the pointer; it will
not jump to the pointer itself.

The line of code “JMP (POINTR)” will cause the 6502 to jump to the address
specified by the 2 bytes at POINTR and POINTR +1. Thus, if POINTR = $0600,
and the 6502 executes the instruction “JMP (POINTR)” when memory location
$0600 holds $00 and $0601 holds $20, then the 6502 will jump to address $2000.
(Remember, addresses are always stored in memory with the low byte first.)

How Branching Works

Incidentally, all branches, whether relative, absolute, or indirect, work by
operating on the contents of the PC (program counter). Before any branch instruc-
tion is executed, the PC holds the address of the current opcode. A branch instruc-
tion changes the PC, so that in the next instruction cycle the 6502 will fetch not the
opcode following the current opcode, but the opcode at the location specified by the
branch instruction. Then execution will continue normally from the new address.

LOOPS AND SUBROUTINES 27

Relocatability

Often I implement short unconditional branches as:

CLC

BCC PLACE
rather than as:

JMP PLACE

This is because the first method (relying as it does on relative rather than ab-
solute addressing) will still work even if you relocate the code in which it is con-
tained. Making your code relocatable will save you time and trouble when you try
to move your programs around in memory and still want them to work.

To relocate code containing the second example, you'd have to change the
operand field because the absolute address of PLACE will have changed. To relocate
code containing the first example, you wouldn't have to change a thing.

Subroutines

Perhaps the two most powerful instructions available to the assembly-language
programmer are the JSR (Jump to SubRoutine) and the RTS (ReTurn from
Subroutine). These instructions (equivalent to GOSUB and RETURN in BASIC)
enable us to organize chunks of code as building blocks called subroutines.

Think of the subroutine as a job. Your computer can do more work for you if it
knows how to do more jobs. Once you teach the 6502 how to do a given job, you
won't have to tell it twice. Let's say you're writing a program in which the same
operation must be performed at various times within a program. In every location
within your program where the operation is required, you could include code to per-
form that operation. On the other hand, you could write code in one place to per-
form that operation, but write that code as a subroutine, and then call that
subroutine whenever necessary from the main, or calling program. A call to a
subroutine causes that routine to execute. When finished, it returns to the instruc-
tion following the call in the main program.

It only takes one line of code to call a subroutine. JSR SUB will call the
subroutine located at the address labeled SUB. After the 6502 fetches and executes
the JSR opcode, the next opcode it fetches will be at the address labeled SUB, in this
example. So far it looks like an unconditional JMP. The 6502 will fetch and execute
opcodes from the addresses following SUB, until it encounters an RTS instruction.

28 BEYOND GAMES

When the 6502 fetches an RTS instruction, it returns to its caller, jumping to the
first opcode following the JSR instruction that called the subroutine. In effect, when
a line of code calls a subroutine, the 6502 remembers where it is before it jumps to
the new location. Then when it encounters an RTS instruction, it knows the address
to which it should return because it remembers where it came from. It then continues
to fetch opcodes from the point following the JSR instruction. Figure 3.1 illustrates
- this procedure. Note that the same subroutine may be called from many different
points in the same program, and will always return to the opcode following the JSR
instruction that called it.

JUMP TO SUBROUTINE

MAIN &k kK ok » SUB ok ok ok
L] L)
o [
[} L 4
LAST RTS

CALL JSR SuUB
RETURN FROM SUBROUTINE

NEXT #¥%#% -
[]

Figure 3.1: Jump to and return from subroutine. When the processor encounters a JSR (jump
to subroutine) instruction, the next instruction executed is the first instruction of the
subroutine. Here, the subroutine SUB is called from MAIN. The last instruction executed in a
subroutine must be an RTS (return from subroutine) instruction. Here, the instruction at label
LAST in subroutine SUB returns control to the next instruction following the call to the
subroutine in the main program, the instruction labeled NEXT. The subroutine SUB can be
called anywhere in the program MAIN when the particular function of SUB is needed.

Subroutines allow you to structure your software. With structured software,
you can make changes to many programs just by changing one subroutine. If, for
example, all programs that print characters do so by calling a single-character-print
subroutine, then any time you improve that subroutine you improve the printing
behavior of all your programs. Changing something only once is a tremendous ad-
vantage over having to change something in many different (usually undocumented)
places within a piece of code. For these reasons, all of the software in this book uses
subroutines. »

LOOPS AND SUBROUTINES 29

Dummies

A dummy subroutine is a subroutine consisting of nothing but an RTS instruc-
tion. A line of code in a program can call a dummy subroutine and nothing will hap-
pen; the 6502 will return immediately, with its registers unchanged.

So why call a dummy subroutine?

A call to a dummy subroutine provides a “hook,” which you may use later to
call a functional subroutine. While developing a program, I may have many lines of
code that call dummy subroutines. Later, when I write the lower-level subroutines,
it's easy to change my program so that it calls the functional subroutines rather than
the dummy subroutines. Trying to insert a subroutine call to a program lacking such
a hook can make you wish for a “memory shoehorn,” which might let you squeeze 3
extra bytes of code into the same address space.

The Stack

In addition to the addressing modes that enable the 6502 to access addressable
memory, one addressing mode lets the 6502 access a 256-byte portion of memory
called the stack.

You may think of this stack as a stack of trays in a cafeteria. The only way a
tray can be added is to place it on top of the existing stack. Similarly, the only way
to get a tray from the stack is to remove one from the top. This is the LIFO (Last-In,
First-Out) method. The last tray placed onto the stack must be the first tray re-
moved.

In our case, when an item is placed onto the top of the stack, it is called a push,
and when an item is removed from the top of the stack, it is called a pop. The last
item onto the stack is said to be at the top of the stack.

For example, let's say we want to place two items onto the stack. (Each item has
an 8-bit value, perhaps a number or an ASCII character; see figure 3.2a.) First we
push item 1 onto the stack, as illustrated in figure 3.2b. All positions above item 1 on
the stack are said to be empty, the item 1 is on the top of the stack.

Now, push item 2 onto the stack (see figure 3.2c). What happens? Item 2 is now
at the top of the stack, not item 1, although item 1 is still on the stack.

Next, to get item 2 back off the stack, we do a pop (see figure 3.2d). This makes
item 1 the top of the stack again. Finally, another pop will remove item 1 from the
stack, leaving the stack completely empty. Note that we had to pop item 2 from the
stack before we could get to item 1 again. This is the LIFO principle.

The instruction PHA lets you push the contents of the accumulator onto the
stack, PLA lets you load the accumulator from the top of the stack (a pop). PHP lets
you push the processor status register onto the stack. PLP lets you load the pro-
cessor status register from the stack.

30 BEYOND GAMES

.
[]
o []
a) . &)
L) []
256
BYTES °
EMPTY
oH
EMPTY y'TEM 1
ITEM1 # le—TOP OF STACK
A\
- STACK
1BYTE
[]
]
¢/ e d)
EMPTY | pust 2 EMPTY %‘TEM 2
ITEM 2 # }e——TOP OF STACK empTyY /
ITEM 1 ITEM1 |e—TOP OF STACK
STACK STACK

Figure 3.2: Pushing and popping the stack.

The stack is a very convenient “pocket” to use when you want to store one or a
few bytes temporarily without using an absolute place in memory. Subroutines may
pass information to the calling routines by using the stack, but be careful: if a
subroutine pushes data onto the stack, and fails to pop that data from the stack
before executing an RTS instruction, then that subroutine will not return to its
caller. This happens because when the 6502 executes a JSR instruction, it pushes the
return address—that is, the address of the opcode following the JSR instruc-
tion—onto the stack, A subroutine can return to its caller only because its return ad-
dress is on the stack. If its return address is not at the top of the stack when the
subroutine executes an RTS, it will not return to its caller, So a subroutine should
always restore the stack before trying to return,

LOOPS AND SUBROUTINES 31

Chapter 4:
Arithmetic and Logic

Character Translation

As demonstrated by Examples 7 and 8, indexed addressing is handy for
performing a given operation (such as a move) on a contiguous group of bytes. But
it also has another important application: table lookup. For example, let’s say you
and a friend have decided to write notes to one another using a substitution code.
For every letter, number, and punctuation mark in a message, you've agreed to
substitute a different character. A “W" will be replaced with a Y;"” a semicolon may
be replaced with a “9,” etc.

You each have the same table showing you what to substitute for each character
that may appear in a message. So you write a note to your friend in English, and
then, using this table (which might be in the form of a Secret Agent Decoding Ring)
you code, or encrypt, your note. You send the note in its encrypted form to your
friend. Anyone else looking at the note would just see garbage, but your friend
knows that a message can be found in it. So he gets his copy of the character transla-
tion table (which may be in his Secret Agent Decoding Ring), and he translates the
encrypted message back into English, looking up the characters that correspond to
each character in the coded message.

Children often enjoy coding and decoding messages in this way, but I find it
about as much fun as filling out forms — which is no fun at all. Unfortunately, pro-
gramming often involves character translation. Fortunately, I don't have to do it
myself. I let my computer perform any necessary character translation by having it
do what our two secret agents were doing: look up answers in a table.

32 BEYOND GAMES

Example 12
Character Translation Subroutine

XLATE TAX Use character to be translated as an in-
dex into the table.
LDA TABLE, X Look up value in table.
RTS Return to caller, bearing translated
character in A and original character in
X.

Transfer Register

In Example 12, the subroutine XLATE assumes when it is called that the ac-
cumulator holds the byte to be translated. This byte might be a letter, a number, a
punctuation mark, a control code, or a graphic character, but however you think of
it, it'’s an 8-bit value. Line 1 of XLATE transfers that 8-bit value from the ac-
cumulator to the X register, using the register-transfer instruction TAX.

Register-transfer instructions operate only on registers; they do not affect ad-
dressable memory. These instructions allow the contents of one register to be
copied, or transferred, to another. The results of a transfer leave the source register
unchanged, and the destination register holding the same value as the source
register. The 6502's register-transfer instructions are:

TAX Transfer accumulator to X register.
TAY Transfer accumulator to Y register.
TXA Transfer X register to accumulator.
TYA Transfer Y register to accumulator.

Register transfers do not affect the status flags.

These instructions let you transfer A to X or Y, or to transfer X or Y to A. But
how would you transfer X to Y, or Y to X? (Hint: it will take two lines of source
code, each line an instruction from the list above.)

Table Lookup
In Example 12, line 2 of XLATE actually performs the character translation by

looking up the desired data in a table. The label, TABLE, identifies the base address
for a table that we've previously entered into memory. The indexed addressing

ARITHMETIC AND LOGIC 33

mode allows line 2 to get the Xth byte above the base address (ie: to get the Xth byte
of the table). When that line is executed, the table lookup is complete. The 6502 has
looked up and now holds in the accumulator the Xth byte in the table. Now all the
6502 must do is return to its caller, bearing the translated character in A and the
original character in X. It accomplishes this with the RTS instruction.

Now you can perform this character translation at any point in any program
with just one line of source code:

JSR XLATE

Table lookup gives me great flexibility as a programmer. If a program uses a
table lookup and for some reason I want the program to behave differently, I will
probably only have to change some values in the table; it’s unlikely that I'll have to
change the table lookup code itself. If I've set up my table well, I might not have to
change anything in the program except the data in the table.

Table lookup is therefore a very fast and flexible means of performing data
translation. But the cost of that speed and flexibility can be size. You might be able
to solve any problem with the right tables in memory, but not if you can't afford the
memory necessary to hold all those tables. It's great when a program can just look
up the answers it needs, but sometimes a program will actually have to compute its
answers.

Arithmetic Operations
The 6502 can perform the following 8-bit arithmetical operations:

Shift
Rotate
Increment
Decrement
Add
Subtract

To understand how the 6502 operates on a byte, you must think of the bits in
that byte. Even if the byte represents a number or a letter, don't think about what
you can do to that number or letter. Think about what you can do to the pattern of
bits in that byte.

What can you do to those bits?

34 BEYOND GAMES

Shift

You can shift the bits in a byte one position to the left or to the right. An ASL
(Arithmetic Shift Left) operates on a byte in this manner: it moves each bit one bit to
the left; it moves the leftmost bit (bit 7) into the carry flag, and it sets the rightmost
bit (bit 0) to zero. See figure 4.1.

/’ NN \
[

0

Figure 4.1: Effect of the ASL instruction.

For example, if the byte at location TMP has the following bit pattern:
address TMP o 1 o0 1 o0 1 1 ©
then after the instruction “ASL TMP” is executed, the data would look like:
address TMP i1 o 1 o 1 1 o0 O

with the carry flag being set to the previous value of bit 7, in this case 0. If the same
instruction is again executed, the data becomes:

address TMP 0 1 0 1 1 0 0 0

and the carry flag is set to 1.

A LSR (Logical Shift Right) has just the opposite effect of the ASL. All bits are
shifted to the right towards the carry flag, introducing zeroes through bit 7. See
figure 4.2.

o c

Figure 4.2: Effect of the LSR instruction.

ARITHMETIC AND LOGIC 35

For example, if the byte at location TMP is as originally given above, then after
the instruction “LSR TMP” is executed, the data at TMP becomes:

address TMP 0 0 1 0 1 0 1 1

with the carry flag being set to the previous value of bit 0, in this case zero. If the
same instruction is executed again, the data becomes:

address TMP 0 0 0 1 0 1 0 1

with the carry flag set to 1.

Because a number is represented in binary (each bit represents a successive
power of two), some arithmetic operations are simple. To divide a byte by two,
simply shift it right; to multiply a value in a byte by two, simply shift it left.

Rotate

You can also rotate the bits in a byte to the left or to the right through the carry
flag. Unlike shifting, rotating a byte preserves all the information originally con-
tained by a byte.

Figure 4.3 shows how a ROL (rotate left) instruction works. For instance, let's
say the data at address TMP is originally the same as in previous examples:

address TMP 0 1 0 1 0 1 1 0

and let’s say that the carry flag is set (ie: it holds a 1).
After a “ROL TMP” instruction is executed, the data becomes:

address TMP 1 0 1 0 1 1 0 1

Figure 4.3: Effect of the ROL instruction.

36 BEYOND GAMES

and the carry bit is set to the previous value of bit 7, namely 1. Notice that bit 0 in
TMP now holds the original contents of the carry flag, and the carry flag holds the
original contents of bit 7. Otherwise, everything looks just the same as in the ASL
operation. After a second execution of the instruction “ROL TMP,” the data
becomes: ‘

address TMP 0 1 0 1 1 0 1 1

with the carry flag set to 1.

In a rotate left instruction, bit 0 is always set from the carry flag. (In the ASL in-
struction, bit 0 is always set to 0.) If this had been an ASL instruction, what would
the bit pattern at TMP be?

Figure 4.4 shows how a ROR (rotate right) instruction works. It is similar to
ROL, except that the carry flag is set from bit 0, and bit 7 is set from the carry flag.

BITS
7 6 5 4 3 2 1 0

AA A A A AT

Figure 4.4: Effect of the ROR instruction.

Rotate a byte left nine times and you'll still have the original byte. The same is
true if you rotate a byte right nine times. But shift a byte left nine times, or right nine
times, and you know what you've got left? Nothing!

Increment, Decrement

You can increment or decrement a byte in three ways: using the INC and DEC
instructions to operate on a byte in memory, using INX and DEX to operate on the X
register, or using INY and DEY to operate on the Y register. None of these instruc-
tions affects the carry flag. They do affect the zero flag: Z is set if the result of anin-
crement or decrement is zero; otherwise Z is cleared. The negative flag is set if the
result of an increment or decrement is a byte with bit 7 set; otherwise N is cleared.

Note that if you increment a register or address holding $FF, it will hold zero.
And similarly, if you decrement a register or address holding a zero, it will hold $FF.

ARITHMETIC AND LOGIC 37

You cannot increment or decrement the accumulator, but you can add or sub-
tract a byte from the accumulator.

Addition

Example 13 shows how to add a byte from the location labeled NUMBER to the
accumulator:

Example 13
CLC Clear the carry flag.
ADC NUMBER Add the contents of location

NUMBER to the accumulator.

After these instructions are executed, the accumulator will hold the low 8 bits of
the result of the addition. If, following the addition, the carry flag is set, then the
result of the addition was greater than 255; if the carry flag is clear, then the result
was less than 256, and, therefore, the accumulator is holding the full value of the
result. Remember, the carry flag must be cleared before performing the ADC in-
struction.

Subtraction

Subtraction is as easy as addition. To subtract a byte from the accumulator,
first set the carry flag (using the SEC instruction) and then subtract from the ac-
cumulator a constant or the contents of some address, using the instruction SBC

(subtract with carry):
SEC Set the carry flag.
SBC OPERND Subtract from accumulator the value of

OPERND,

If the operand is greater than the initial value of the accumulator, the subtract
operation will clear the carry flag; otherwise the carry flag will remain set. In either
case, the accumulator will bear the 8-bit result.

Thus, you clear the carry flag before adding and set the carry flag before sub-

38 BEYOND GAMES

tracting. If the carry flag doesn't change state, then the accumulator bears the entire
result. But if the addition or subtraction changes the state of the carry flag, then
your result is greater then 255 (for an addition) or less than zero (for a subtraction).

Decimal Mode

The processor status register includes a bit called the decimal flag. If the decimal
flag is set, then the 6502 will perform addition and subtraction in decimal mode. If
the decimal flag is clear, then the 6502 will perform addition and subtraction in
binary mode. Decimal mode means the bytes are treated as BCD (Binary Coded
Decimal), meaning that the low 4 bits of a byte represent a value of 0 thru 9, and the
high 4 bits of the byte represent a value of 0 thru 9. Neither nybble (4 bits) may con-
tain a value of A-F. So, each nybble represents a decimal digit.

The instructions SED and CLD set the decimal flag and clear it, respectively.
Unless you'll be operating with figures that represent dollars and cents, you won't
need to use the decimal mode. All software in this book assumes that the decimal
mode is not used.

Decimal 255 is the biggest value that can be represented by a binary-coded byte,
but decimal 99 is the biggest value that can be represented by a byte using Binary
Coded Decimal.

Logical Operations

What if you want to set, clear, or change the state of one or more bits in a byte
without affecting the other bits in that byte? Input and output operations often de-
mand such “bit-twiddling,” which can be performed by the 6502’s logical operations
ORA, AND, and XOR.

Setting Bits

The ORA instruction lets you set one or more bits in the accumulator without
affecting the state of the other bits. ORA logically OR’s the accumulator with a
specified byte, or mask, setting bit n in the accumulator if bit n in the accumulator is
initially set or if bit n in the mask is set, or if both of these bits are set. A logical OR
will leave bit n of the accumulator clear only if bit n is initially clear in both the ac-
cumulator and the mask. Table 4.1 shows a truth table for the logical operator OR.
A truth table gives all possible combinations of 2 bits that can be operated upon (in
this case, ORed) and the results of these combinations.

ARITHMETIC AND LOGIC 39

Table 4.1: Truth table for the logical OR operand.

Bit 1 Bit 2 Result
0 OR 0 = 0
0 OR 1 = 1
1 OR O = 1
1 OR 1 = 1

For example, suppose we executed the instruction “ORA #$80.” Here the mask
is $80, or the bit pattern 10000000. This instruction would therefore set bit 7 of the
accumulator while leaving all other bits unchanged. So, if the accumulator had a
value of 00010010 before the above instruction was executed, it would have the
value of 10010010 afterwards.

Another example would be “ORA #3.” Since a decimal 3 becomes 00000011
when converted to an 8-bit binary mask, the above instruction would set bits 0 and 1
in the accumulator, leaving bits 2 thru 7 unchanged.

How would you set the high 4 bits in the accumulator? The low 4 bits?

Clearing Bits

You can clear one or more bits in the accumulator without affecting the state of
the other bits through the use of the AND instruction. AND performs a logical AND
on the accumulator and the mask specified by the operand. AND will set bit n of the
accumulator only if bit n of the accumulator is set initially and bit n is set in the
mask. If bit n is initially clear in the accumulator or if bit n is clear in the mask, then
AND will clear bit n in the accumulator. Table 4.2 gives the truth table for the
logical AND operation.

Table 4.2: The truth table for the logical AND.

Bit 1 Bit 2 Result
0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

AN DEVAND RAMEQ

For instance, the line of source code “AND #1” will clear all bits except bit 0 in
the accumulator; bit 0 will remain unchanged. “AND #$F0" will clear the low 4 bits
of the accumulator, leaving the high 4 bits unchanged. Select the right mask, and
you can clear any bit or combination of bits in the accumulator without affecting the
other bits in the accumulator. '

Toggle Bits

The exclusive OR operation, XOR, lets you “flip,” or toggle, one or more bits in
the accumulator (ie: change the state of one or more bits without affecting the state
of other bits). XOR will set bit n of the accumulator if bit n is set in the accumulator
but not in the mask, or if bit n is set in the mask but not in the accumulator. If bit n
has the same state in both the accumulator and in the mask, then XOR will clear bit
n in the accumulator. Table 4.3 shows the truth table for this operation.

Table 4.3: The truth table for the exclusive OR (XOR).

Bit 1 Bit 2 Result
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

To toggle bit n in the accumulator, simply XOR the accumulator with a mask
which has bit n set but all other bits clear. Bit n will change state in the accumulator,
but all other bits in the accumulator will remain unchanged.

The logical operators, combined with the 6502’s relative branch instructions,
make it possible for a program to take one action or another depending on the state
of a given bit in memory. Let's say you want a piece of code that will take one action
(Action A) if a byte, called FLAG, has bit 6 set; yet take another action (Action B) if
that bit is clear. The code of Example 14 shows one way to ignore all other bits in
FLAG, and still preserve FLAG.

Example 14
LDA FLAG Get flag byte.
AND #%$40 Clear all bits but bit 6.

BEQ PLAN.B

ARITHMETIC AND LOGIC 41

PLAN.A XXXXX Take Action A, since bit 6 was set
in flag.

PLAN.B Take Action B, since bit 6 was
clear in flag,

What good are flags? Let me give an example. The flag on a rural mailbox may
be either raised or lowered to indicate that mail is or is not awaiting pickup. Raising
and lowering those flags requires a little bit of effort (no pun intended), but it
enables the mail carrier to complete the route much more quickly than would be
possible if every mailbox had to be checked every time around. Presumably, this
provides better service for everyone on the route.

That mail carrier's routine is a very sophisticated piece of programming. If we
think of the mail carrier as a person following a program, then we can see some of
the power and flexibility that come from the use of flags.

The mail carrier's program has two parts: What must be done at the post office
and What must be done on the route. At the post office, the mail carrier sorts the
mail, bundles letters for the same address and puts the bundles for a given route into
a mail sack in some order. This sorting at the post office means the mail carrier on
the route can make his or her rounds more quickly, because no further sorting and
searching is required. (We won't go into sorting and searching in this book; that's a
volume in itself. For a helpful reference see Donald E Knuth's Searching and
Sorting.)

Now comes the second part of the mail carrier’s program: What must be done
on the route. The mail carrier picks up the mail sack and leaves the post office. Driv-
ing down country roads, the mail carrier sees a mailbox ahead. Do I have any mail
for the people at this address? If so, the mail carrier’s mental program says, I'll slow
down and deliver it. But what if I don’t have any mail now for these people? Do I
just keep driving? Do I go to the next address?

Not if I want to keep my job.

The mail carrier looks a little more closely at the mailbox. Is the flag up or
down? If it's down, I can just drive by, but if the flag is up I must stop and pick up
the outgoing mail.

A flag is just a single bit of information, but by interpreting and responding to
the state of flags, even a simple program can respond to many changing conditions.
If your computer has 8,000 bytes of programmable memory, that means it has
64,000 bits of memory. Conceivably, you could use most of those bits as flags,
perhaps simulating the patterns of outgoing mail in a community of more than
50,000 households.

But you didn't buy a computer to play post office. And you know enough now
to follow the programs presented in the following chapters. These programs will in-

42 BEYOND GAMES

clude examples of all the instructions and programming techniques presented in this
very fast course in assembly-language programming. The programs in the following
chapters will also give you some tools to use in developing your own programs.

(Incidentally, there is one 6502 instruction which doesn't do anything at all. The
instruction NOP performs NO operation. Why would you want to perform no
operation? Occasionally, it's handy to replace an unwanted instruction with a dum-
my instruction. When you want to disable some code, simply replace the unwanted
code with NOP's. A NOP is represented in memory by $EA.)

ARITHMETIC AND LOGIC 43

Chapter 5:
Screen Utilities

Now let's consider how to display something on the video screen. On the Ap-
ple, Atari, OS], and PET computers, the video-display circuitry scans a particular
bank of memory, called the display memory. Every address in the display memory
represents, or is mapped to, a different screen location (hence the term memory-
mapped display). For each character in the display memory, the display circuitry
puts a particular image, or graphic, on the screen (hence the term character
graphics). To display a character in a given screen location, you need only store that
character in the one address within display memory that corresponds to the desired
screen location,

To know which address corresponds to a given screen location you must con-
sult a display-memory map. Appendices B1 thru B4 describe how display memory is
mapped on the Apple, Atari, OS], and PET computers. Note that two different
systems may have two different addresses for the same screen location. Also note
how burdensome it can be to look up the addresses of even a few screen locations
just to display a few characters on the video screen.

Rather than address the screen in an absolute manner, we'd like to be able to do
so indirectly. Ideally, we'd like a software-controlled “hand” that we can move
about the screen. Then we could pick up the character under the hand, or place a
new character under the hand, without being concerned with the absolute address of
“the screen location under the hand at the moment. Such a hand can be implemented
quite easily as a zero-page pointer.

44 BEYOND GAMES

Pointers

A pointer is just a pair of contiguous bytes in memory. Since 1 byte contains 8
bits, a pointer contains 16 bits, which means a pointer can specify any one of more
than 65,000 (specifically: 21¢) different addresses.

A pointer can specify, or point to, only one address at a time. The low byte of a
pointer contains the 8 LSB (least-significant bits) of the address it specifies, and the
high byte of the pointer contains the 8 MSB (most-significant bits) of the address it
specifies.

Let's say we want a pointer at location $1000. We must allocate 2 bytes for the
pointer, which means it will occupy- the bytes at $1000 and $1001. $1000 will hold
the low byte, and $1001 will hold the high byte. If we want this pointer to specify
address $ABCD, then we may set it as follows:

POINTR = $1000 This assembler directive equates the label
POINTR with the value $1000. (It's POINTR
and not POINTER only because the assembler
used in preparing this book chokes on labels
longer than six characters — a common, if
arbitrary, limitation.)

LDA #$CD A9 CD Set the
STAPOINTR 8D 00 10 low byte.
LDA #SAB A9 AB Set the

STA POINTR+1 8D 01 10 high byte.

Now POINTR points to $ABCD.

Although a pointer may be anywhere in memory, it becomes especially power-
ful when it's in the zero page (the address space from 0000 to $00FF). The 6502 in~
direct addressing modes allow a zero-page pointer to specify the address on which
certain operations may be performed. A zero-page pointer must be located in the
zero page, but it may point to any location in memory. For example, a zero-page
pointer may be used to specify the address in which data will be loaded or stored.
Since display memory looks like any other random-access memory to the processor,
we may implement our television hand as a zero-page pointer.

TV.PTR

We want a zero-page pointer that can point to particular screen locations. Let’s
call it TV.POINTER, or TV.PTR for short. Whenever we examine or modify the
screen, we'll do it through the TV.PTR.

SCREEN UTILITIES 45

Because the TV.PTR must be in the zero page, let’s place it at $0000, meaning it
will occupy the bytes at $0000 and at $0001. We can do that with the following
assembler directive:

TV.PIR = $0

TV.PUT

The TV.PTR always specifies the current location on the screen. Thus, to
display a graphic at the current location on the screen, we need only load the ac-
cumulator with the 8-bit code for that graphic and then execute the following two
lines of code:

LDY #0 A0 00
STA (TV.PTR),Y 91 00

The two lines of above code are sufficient to display a given graphic in the cur-
rent screen location. But what if you want to display a given character in the current
screen location? The ASCII code for a character is not necessarily the same as your
system’s display code for that character’s graphic. To display an “A” in the current
screen location, we cannot simply load the accumulator with an ASCII “A” (which
is $41) and then execute the two lines of above code, because the graphic “A” may
have a different display code on your system. Instead of displaying an “A,” we
might display something else. Of the four computers considered in this book, only
the Ohio Scientific Challenger I-P has a one-to-one correspondence between any
character’s ASCII code and that character’s graphic code. The Atari, the PET, and
the Apple computers lack such a one-to-one correspondence.

How then can we display a given ASCII character in the current screen loca-
tion? We can do it by assuming that there exists a subroutine called FIXCHR, which
will “fix” any given ASCII code, by translating it to its corresponding graphic or
display code. FIXCHR will be different for each system, so we won't go into its
details here (see the appendix pertaining to your computer for a description and
listing of FIXCHR for your system). At this point we will assume only that FIXCHR
exists, and that if we call it with an ASCII character in the accumulator, it will return
with the corresponding display code in the accumulator.

We already know how to display a given graphic in the current screen location.
With FIXCHR we now know how to display any given ASCII character in the cur-
rent screen location, And since displaying any given ASCII character in the current
screen location is something we're likely to do more than once, let’s make it a
subroutine. We'll call that subroutine TV.PUT since it will let us put a given ASCII

46 BEYOND GAMES

character up on the TV screen:

TV.PUT JSR FIXCHR Convert ASCII character to your
system’s display code for that character.
LDY #0 Put that graphic in the
STA (TV.PTR), Y current screen location.
RTS Return to caller.

The Screen Location

However, these examples of modifying and examining screen locations through
the TV.PTR will work only if the TV.PTR is actually pointing at a screen location.
Therefore, before executing code such as the examples given above, we must be sure
the TV.PTR points to a screen location.

There are several ways to do this. If you want to write code that will run on
only one machine (or on several machines whose display memory is mapped the
same way), then you can use the immediate mode to set the TV.PTR to a given
address on the screen. Let's say you want to set the TV.PTR to point to the third col-
umn of the fourth row (counting right and down from an origin in the upper-left cor-
ner). If you have an Ohio Scientific Challenger I-P, then you can consult your
system’s documentation and determine that address $D062 in display memory cor-
responds to your desired screen location. $D0 is the high byte of this screen location;
$62 is the low byte of this screen location. Thus, you can set TV.PTR with the
following lines of code: A

LDA #%62 A9 62 Set
STA TV.PTR 85 00 low byte.
LDA #$D0 A9 DO Set

STATV.PTR+1 85 01 high byte.

This code is fast and relocatable. But it’s not very convenient to have to look up
a display address every time we write code that displays something on the screen. It

SCREEN UTILITIES 47

would be much more convenient if we could address the screen as a series of X and Y
coordinates. Why not have a subroutine that sets the TV.PTR for us, provided we
supply it with the desired X and Y coordinates?

TVTOXY

TVTOXY is a subroutine that sets the value of the TV.PTR to the display ad-
dress whose X and Y coordinates are given by the X and Y registers. (Note that we
count the columns and rows from zero.) To make the TV.PTR point to the third col-
umn from the left in the fifth row from the top, a calling program need only include
the following code:

LDY #2 The leftmost column is column zero, so the third column is
column two.

LDY #4 The topmost row is row zero, so the fifth row is row four.

JSR TVTOXY Set TV.PTR to screen location whose X and Y coordinates are

given by the X and Y registers.

How will TVTOXY work? We could have TVTOXY do just what we were
doing: look up the desired address in a table. A computer can look up data in a table
very quickly, but the speed may not be worth it if the table requires a lot of memory.
If we don’t mind waiting a little longer for TVTOXY to do its job, we can have
TVTOXY calculate the desired value of TV.PTR, rather than look it up in a table,
But how can you calculate the address of a given X and Y location on the screen?

You can't do it without data. But you don't need a large amount of data to
determine the address of a given X,Y location in screen memory; you need only have
access to the following facts:

HOME The address of the character in the upper-left corner of the
screen (ie: the lowest address in screen memory).

ROWINC ROW INCrement: the address difference from one row to the
next.

48 BEYOND GAMES

Knowing the values of HOME and ROWINC for a given system, you can
calculate the address corresponding to any X,Y location:

HOME Address of character in upper-left corner
+ X Register + X coordinate
+ (Y Register) X ROWINC + (Y coordinate) X ROWINC

TV.PTR Address of screen location at column X, row Y.

Run through this calculation for several screen locations and compare the
results with the addresses you look up in the display-memory map for your system.
(Remember that we count columns and rows from zero, not from one.) Now if
TVTOXY can run through this calculation for us, we'll never have to look at a
display-memory map again; we can write all our display code in terms of cartesian
coordinates.

But we shouldn't be satisfied with TVTOXY if it only runs through the above
calculation. After all, what happens if TVTOXY is called and the Y register holds a
very large number? If the Y register is greater than the number of rows on the screen,
then the above calculation will set the TV.PTR to an address outside of display
memory. We don’t want that. Maybe a calling program will have a bug and call
TVTOXY with an illegal value in X or in Y. If TVTOXY doesn't catch the error, the
calling program may end up storing characters in memory that is not display-
memory. It might end up over-writing part of itself, which would almost certainly
invite long and arduous debugging. ;

I hate debugging. I know I'm going to make mistakes, but I'd like my software
to catch at least some bugs before they run amuck. So let's have TVTOXY check the
legality of X and Y before blindly calculating the value of TV.PTR.

How can TVTOXY check the legality of X and Y? How big can X or Y get
before it's too big? We need some more data:

TVCOLS The number of columns on the display screen, counting
from zero.

TVROWS The number of rows on the display screen, counting from
zero,

Now TVTOXY requires the following four facts about the host computer:

SCREEN UTILITIES 49

HOME
ROWINC
TVROWS
TVCOLS

If we store these facts about the host system in a particular block of memory,
then TVTOXY need only consult that block of memory to learn all it needs to know
about the screen. TVTOXY can then work as follows:

TVTOXY
TVTOXY SEC Is X out of range?
CPX TVCOLS
BCC X.OK If not, leave it alone.
If X is out of range, give
LDX TVCOLS it its maximum legal value.
Now X is legal.
X.0K SEC Is Y out of range?
CPY TVROWS
BCC Y.OK If not, leave it alone,

If Y is out of range, give
LDY TVROWS it its maximum legal value.
Now Y is legal.

Y.OK LDA HOME Set TV.PTR = HOME.
STA TV.PTR
LDA HOME+1
STATV.PTR+1

TXA Add X to TV.PTR.
CLC

ADCTV.PTR

BCC COLSET

INC TV.PTR+1

CLC

COLSET CPY #0 Add Y*ROWINC to TV.PTR.
BEQ EXIT

LOOP CLC
ADC ROWINC
BCC NEXT

50 BEYOND GAMES

INCTV.PTR+1

NEXT DEY

BNE LOOP
EXIT STA TV.PTR

RTS Return to caller.
TVDOWN, TVSKIP, TVPLUS

Using TVTOXY, we can set TV.PTR to a screen location with any desired X,Y
coordinates. But it would also be convenient to be able to modify TV.PTR relative
to its current value. For example, after placing a character on the screen, we might
want to make TV.PTR point to the next screen location to the right, or perhaps to
the screen location directly below the current screen location. We might even want
to make TV.PTR skip over several screen locations to make it point to “the nth
screen location from here,” where “here” is the current screen location. For these oc-
casions, the subroutines TVDOWN, TVSKIP, and TVPLUS come in handy.

TVDOWN, TVSKIP, TVPLUS
TVDOWN LDA ROWINC Move TV.PTR down by one row.
‘ CLC .

BCC TVPLUS Unconditionally branch.

TVSKIP LDA #1 Skip one screen location by increment-

ing TV.PTR.

TVPLUS CLC Add the contents of the accumulator
ADC TV.PTR to the two zero-page bytes
BCC NEXT comprising the TV.PTR.
INCTV.PTR+1

NEXT STA TV.PTR
RTS Return to caller.

Note that the routines TVDOWN and TVSKIP make use of the routine
TVPLUS, which assumes that the accumulator has been set to the number of loca-
tions to be skipped. For TVDOWN and TVSKIP, the accumulator is set to
ROWINC and 1, respectively.

* Right now TVPLUS might not seem long enough to be worth making into a

SCREEN UTILITIES 51

subroutine. Any program that calls TVPLUS could perform the addition itself, at a
cost of only a few bytes, and at a saving of several machine cycles in the process.
However, we may make TVPLUS more sophisticated later on.

For example, we could enhance TVPLUS so it performs error checking auto-
matically, to ensure that TV.PTR will never point to an address outside of screen
memory. Such error checking would be very burdensome for every calling program
to perform, but if and when we insert it into TVPLUS, every caller will auto-
matically get the benefit of that modification.

VUCHAR

With TV.PUT we can display an ASCII character in the current screen location,
and with TVSKIP we can advance to the next screen location. So why not combine
the two, creating a subroutine that displays in the current screen location the graphic
for a given ASCII character, and then automatically advances TV.PTR so it points
to the next screen location? This would make it easy for a calling program to display
a string of characters in successive screen positions. Since this subroutine will let the
user view a character, let’s call it VUCHAR:

VUCHAR JSRTV.PUT Display, in the current screen location,
the graphic for the character whose
ASCII code is in the accumulator.
JSR TVSKIP Advance to the next screen location.
RTS

We could even squeeze VUCHAR into the code presented above for
TVDOWN, TVSKIP, and TVPLUS, by inserting one new line of source code im-
mediately above TVSKIP. (See Appendix C1, the assembler listing for the Screen
Utilities, which also includes some error checking within TVPLUS.)

VUBYTE

With the screen utilities presented thus far, we can display a character on the
screen in the current location, but we don't have a utility to display a byte in hexa-
decimal representation. Let’s make one,

We'll call this utility VUBYTE, since it will let the user view a given byte. With
VUBYTE, a calling program must take only three steps to display a byte in hexa-
decimal representation anywhere on the screen:

52 BEYOND GAMES

1) Set a zero-page pointer (TV.PTR) to point to the screen location where the
byte should be displayed; 2) load the accumulator with the byte to be displayed; and

then 3) call VUBYTE.

START

WHAT HEXADECIMAL DIGIT
CORRESPONDS TO THE
HIGH FOUR BITS

OF THE BYTE?

DETERMINE THE ASCII
CHARACTER FOR THAT
HEXADECIMAL DiGIT

PLACE THAT ASCII
CHARACTER ON
SCREEN AT THE
CURRENT LOCATION

WHAT HEXADECIMAL DIGIT
CORRESPONDS TO THE LOW
FOUR BITS OF THE BYTE?

DETERMINE THE ASCil
CHARACTER FOR THAT
HEXADECIMAL DIGIT

PLACE THAT ASCI!I
CHARACTER IN NEXT
SCREEN LOCATION

SET TV. PTR TO POINT TO
NEXT SCREEN LOCATION

RETURN

Figure 5.1: Flowchart of the routine VUBYTE, which displays a byte in hexadecimal represen-

tation on the video screen.

SCREEN UTILITIES §3

VUBYTE will display the given byte as two ASCII characters in the current
position on the screen, and when VUBYTE returns, TV.PTR will be pointing to the
screen location immediately following the two screen locations occupied by the dis-
played characters. '

VUBYTE need only determine the ASCII character for the hexadecimal value of
the 4 MSB (most-significant bits), store that ASCII character in the screen location
pointed to by TV.PTR, then display the ASCII character for the hexadecimal value
of the accumulator’s 4 LSB (least-significant bits) in the next screen location. See
figure 5.1 for a flowchart outlining this.

VUBYTE seems to be asking for a utility subroutine to return the ASCII char-
acter for a given 4-bit value. Let's call this subroutine ASCII. ASCII will return the
ASCII character for the hexadecimal value represented by the 4 least-significant bits
in the accumulator. It will ignore the 4 most-significant bits in the accumulator.

If we assume that ASCII exists, then we can write VUBYTE:

VUBYTE
VUBYTE PHA Save accumulator.
LSR A Move 4 MSB
LSR A into positions
LSR A occupied by
ISR A 4 LSB.
JSR ASCIL Determine ASCII for accumulator’s 4

LSB (which were its 4 MSB).

JSR VUCHAR Display the ASCII character in the cur-
rent screen location and advance to next
screen location.

PLA . Restore original value of accumulator.

JSR ASCIL Determine ASCII for accumulator’s 4
LSB (which were its 4 LSB).

JSR VUCHAR Display this ASCII character just to the
right of the other ASCII character and

advance to next screen location.

RTS Return to caller.

54 BEYOND GAMES

Of course, ASCII doesn't exist yet. So let’s write it, and then VUBYTE should
be complete.

ASCIHl
ASCII AND #$0F Clear the 4 MSB in accumulator.
CMP #$0A Is accumulator greater than 97
BMI DECIML
ADC #6 If so, it must be A thru F. Add $36 to
accumulator to convert it to correspond-
ing ASCII character. (We'll add $36 by
adding $6 and then adding $30.)
DECIML ADC #%30 If accumulator is 0 thru 9, add $30 to it
to convert it to corresponding ASCII
character.
RTS Return to caller, bearing the ASCII char-

acter corresponding to the hexadecimal
value initially in the 4 LSB of the ac-
cumulator.

TVHOME, CENTER

Now we can display a character or a byte at the current screen location, and we
can set the current screen location to any given X,Y coordinates or modify it relative
to its current value. It would also be handy if we could set the TV.PTR to certain
fixed locations: locations that more than one calling program might need as points
or origin. For example, a calling program might need to set the TV.PTR to the
HOME location (position 0,0), or to the CENTER of the screen:

TVHOME, CENTER

TVHOME LDX #0 Set TV.PTR to the leftmost column
LDY #0 of the top row
JSR TVTOXY of the screen,
RTS Then return to caller.

SCREEN UTILITIES 85

CENTER LDA TVROWS
LSR A
TAY

LDA TVCOLS
LSR A
TAX

JSR TVTOXY

RTS

TVPUSH, TV.POP

Load A with total rows.

Divide it by two.

Y now holds the number of the central
row on the screen.

Load A with total columns.

Divide it by two.

X now holds the number of the central
column on the screen.

Now X and Y registers hold X, Y coor-
dinates of center of screen.

Set the TV.PTR to X,Y coordinates.

Return to caller.

The screen utilities presented thus far enable us to set or modify the current
position on the screen. We might also want to save the current position on the screen
and then restore that position later. We can do this by pushing TV.PTR onto the

stack and then pulling it from the stack:

TVPUSH PLA

TAX
PLA
TAY

LDA TV.PTR+1
PHA

LDA TV.PTR
PHA

TYA
PHA
TXA
PHA

RTS

56 BEYOND GAMES

TVPUSH

Pull return address from stack.
Save it in X...
...andinY.

Get TV.PTR
and save

it on

the stack.

Place return
address back...

... on stack.

Then return to caller.

TVPOP

TV.POP PLA Pull return address from stack.
TAX Save it in X...
PLA '
TAY ...and in Y,
PLA Restore...
STA TV.PTR ...TV.PTR
PLA v ...from
STA TV.PTR+1 ...stack.
TYA - Place return
PHA address back...
TXA
PHA ... on stack.
RTS Then return to caller.

Now a calling program can save its current screen position with one line of
source code: “JSR TVPUSH.” That calling program can then modify TV.PTR and
later restore it to its saved value with one line of source code: “JSR TV.POP.”

CLEAR SCREEN

Now that we can set TV.PTR to any X,Y location on the screen, and display
any byte or character in the current location, let's write some code to clear all or part
of the screen. One subroutine, CLR.TV, will clear all of the video screen for us while
preserving the zero page. A second routine, CLR.XY, will start from the current
screen location and clear a rectangle, whose X,Y dimensions are given by the X,Y
registers. Thus, a calling program can call CLR.TV to clear the whole screen; or a
calling program can clear any rectangular portion of the screen, leaving the rest of
the screen unchanged, just by making TV.PTR point to the upper left-hand corner of
the rectangle to be cleared, and then calling CLR.XY with the X and Y registers
holding, respectively, the width and height of the rectangle to be cleared.

CLR.TV JSR TVPUSH Save the zero-page bytes that will be
changed.
JSR TVHOME Set the screen location to upper-left cor-

ner of the screen.

SCREEN UTILITIES 57

LDX TVCOLS Load X,Y registers with
LDY TVROWS X,Y dimensions of the screen.
JSR CLR.XY Clear X columns, Y rows from current
screen location,
JSR TV.POP Restore zero-page bytes that were
changed.
RTS Return to caller, with screen clear and
with zero page preserved.
CLR.XY STX COLS Set the number of columns to be
, cleared.
TYA
TAX Now X holds the number of rows to be
cleared.
CLRROW LDA BLANK Load accumulator with your system’s
graphic code for a blank.
LDY COLS Load Y with number of columns to be
cleared.
CLRPOS STA (TV.PTR),Y Clear a position by writing a blank into
it.
DEY Adjust index for next position in the
row.
BPL CLRPOS If not done with row, clear next posi-
tion...
JSR TVDOWN If done with row, move current screen
location down by one row.
DEX Done last row yet?
BPL CLRROW If not, clear next row...
RTS If so, return to caller.
COLS BYTE 0 Variable: holds number of columns to

be cleared.

There are many more screen utilities you could develop, but the utilities pre-
sented in this chapter are a good basic set. Now programs can call the following
subroutines to perform the following functions:

ASCII: Return ASCII character for 4 LSB in A.

CENTER: Set current screen position to center of screen.

CLR.TV: Clear the entire video display, preserving TV.PTR.

CLR.XY: Clear a rectangle of the screen, with X,Y dimensions specified
by the X,Y registers.

TVDOWN: Move current screen position down by one row.

58 BEYOND GAMES

TVHOME: .Set current screen position to the upper-left corner of the

screen,
TVPLUS: Add A to TV.PTR.
TV.POP: Restore previously saved screen position from stack.
TVPUSH: Save current screen location on stack.
TV.PUT: Display ASCII character in A at current screen locat1on
TVSKIP: Advance to next screen location.
TVTOXY: Set current screen position to X,Y coordinates given by X,Y
registers.
VUBYTE: Display A, in hexadecimal form, at current screen location.
Advance current screen location past the displayed byte.
VUCHAR: Display A as an ASCII character in current screen location;

then advance to next screen location.

With these screen utilities, a calling program can drive the screen display with-
out ever dealing directly with screen memory or even with the zero page. The calling
program need not concern itself with anything other than the current position on the
screen, which can be dealt with as a concept, rather than as a particular address
hard-wired into the code.

SCREEN UTILITIES 69

Chapter 6:
The Visible Monitor

Hand Assembling Object Code

An assembler is a wonderful software tool, but what if you don't have one?Is it
possible to write 6502 code without an assembler?

You bet!

Not only is it possible to write machine code by hand, but all of the software in
this book was originally assembled and entered into the computer by hand. In fact, I
hand assembled my code long after I had purchased a cassette-based assembler,
because I could hand assemble a small subroutine faster than I could load in the en-
tire assembler.

Hand assembling code imposes a certain discipline on the programmer. Because
branch addresses must be calculated by counting forward or backward in hexa-
decimal, I tried to keep my subroutines very small. (How far can you count back-
ward in hexadecimal?) I wrote programs as many nested subroutines, which I could
assemble and test individually, rather than as monolithic, in-line code. This is a
good policy even for programmers who have access to an assembler, but it is essen-
tial for any programmer who must hand assemble code.

Yet once you've written a program consisting of machine-language instructions,
how can you enter it into memory? You can read your program on paper, but how
can you present it to the 65027

A program called a machine-language monitor allows you to examine and
modify memory. It also allows you to execute a program stored in memory. The
Apple and Ohio Scientific computers each feature a machine-language monitor in
ROM (read-only memory). The Atari computers feature a machine-language
monitor in a plug-in program cartridge. Your system’s documentation should tell
you how to use the features of your monitor, but let's take a closer look at one

60 BEYOND GAMES

monitor in particular, the Ohio Scientific 65V monitor. Because it is stored in read-
only memory in the OSI Challenger I-P, I will refer to it as the OSI ROM monitor.

A Minimal Machine-Language Monitor

You can invoke the OSI ROM monitor quite easily by pressing the BREAK key
and then the “M” key. The monitor clears the video screen and presents the display
shown in figure 6.1.

0000 AS

Figure 6.1: Ohio Scientific ROM (read-only memory) monitor display.

The display consists of two fields of hexadecimal characters: an address field
and a data field. Figure 6.1 indicates that $A9 is the current value of address $0000.

The OSI ROM monitor has two modes: address mode and data mode. When
the monitor is in address mode, you can display the contents of any address simply
by typing the address on the keyboard. Each new hexadecimal character will roll in-
to the address field from the right. To display address $FEOD, you simply type the
keys F, E, 0, and then D.

To change the contents of an address, you must enter the data mode. When the

THE VISIBLE MONITOR 61

OSI ROM monitor is in the data mode, hexadecimal characters from the keyboard
will roll into the data field on the screen. For your convenience, when the monitor is
in the data mode you can step forward through memory (ie: increment the displayed
address) by depresssing the RETURN key. Unfortunately, this convenience is not
available in address mode, and neither mode allows you to step backward through
memory (ie: to decrement the address field).

Beware: the OSI ROM monitor can mislead you. If the monitor is in the data
mode and you type a hexadecimal character on the keyboard, that character will roll
into the data field on the screen. Presumably that hexadecimal character also rolls
into the memory location displayed on the screen. Yet, this might not be the case. In
fact, the OSI ROM monitor displays the data you intended to store in an address,
rather than the actual contents of that address. If you try to store data in a read-only
memory address, for example, the OSI ROM monitor will confirm that you've
stored the intended data in the displayed address, yet if you actually inspect that ad-
dress (by entering address mode and typing in the address), you'll see that you
changed nothing. This makes sense — you can't write to read-only memory. But the
OSI ROM monitor leads you to think that you can.

The OSI ROM monitor can be confusing in other ways. For example, the dis-
play does not tell you whether you're in data mode or address mode; you've got to
remember at all times which mode you last told the monitor to use. Furthermore, to
escape from address mode you must use one key, while to escape from data mode
you must use another key. Therefore you must always remember two escape codes
as well as the current mode of the monitor.

Furthermore, the OSI ROM monitor does not make it very easy for you to enter
ASCII data into memory. To enter an ASCII message into memory, you must con-
sult an ASCII table (such as Appendix A2 in this book), look up the hexadecimal re-
presentation of each character in your message, and then enter each of those ASCII
characters via two hexadecimal keystrokes. Then, once you've got an ASCII
message in memory, the OSI ROM monitor won't let you read it as English text;
you'll have to view that message as a series of bytes in hexadecimal format, and then
look up, again in Appendix A2 or its equivalent, the ASCII characters defined by
those bytes. That won't encourage you to include a lot of messages in your soft~
ware — even though meaningful prompts and error messages can make your soft-
ware much easier to maintain and use.

Finally, it is worth examining the way the OSI ROM monitor executes pro-
grams in memory. When you type “G” on the Ohio Scientific Challenger I-P, the
OSI ROM monitor executes a JMP (unconditional jump) to the displayed address.
That transfers control to the code selected, but it does so in such a way that the code
must end with another unconditional jump if control is to return to the OSI ROM
monitor. This forces you to write programs that end with a JMP, rather than
subroutines that end with an RTS.

Programs that end with a JMP are not used easily as building blocks for other
programs, whereas subroutines are incorporated quite easily into software struc-
tures of ever-greater power. So wouldn't it be nice if a machine-language monitor

62 BEYOND GAMES

executed a JSR to the displayed address? This would call the displayed address as a
subroutine, encouraging users to write software as subroutines, rather than as code
that jumps from place to place. Such a monitor might actually encourage good pro-
gramming habits, inviting the user to program in a structured manner, rather than
daring the user to do so. In this chapter we'll develop such a monitor.

Objectives

If you've spent any time using a minimal machine-language monitor, you've
probably thought of some ways to improve it. Based on my own experience, I knew
that I wanted a monitor to be:

1) Accurate
The data field should display the actual contents of the displayed address, not
the intended contents of that address.

2) Convenient

It should be possible to step forward or backward through memory, in any
mode. It should also be possible to enter ASCII characters into memory directly
from the keyboard, without having to look up their hexadecimal representations
first, and it should be possible to display such characters as ASCII characters, rather
than as bytes presented as pairs of hexadecimal digits.

3) Encourage Structured Programming

The monitor should call the displayed address as a subroutine, rather than jump
to the displayed address. This will encourage the user to write subroutines, rather
than monolithic programs that jump from place to place.

4) Simplify Debugging

The monitor should load the 6502 registers with user-defined data before calling
the displayed address. Thus a user can initially test a subroutine with different
values in the registers. Then, when the called subroutine returns, the monitor should
display the new contents of the 6502 registers. Thus, by seeing how it changes or
preserves the values of the 6502 registers, the user could judge the performance of
the subroutine.

Because my objective was to make the 6502 registers visible to the user by dis-
playing the 6502 registers before and after any subroutine call, I've chosen to call
this monitor the Visible Monitor. Figure 6.2 shows its display format.

THE VISIBLE MONITOR 63

FIELD © 1 2 3 4 5 6

1135 4A J 00 00 00 00

Figure 6.2: Visible Monitor Display with fields numbered.

VISIBLE MONITOR DISPLAY

The Visible Monitor Display

Notice that the display in figure 6.2 has seven fields, not two as in the OSI ROM
monitor display. The first two fields (fields 0 and 1) are the same as the two fields in
the OSI ROM monitor — that is, they display an address and a hexadecimal
representation of the contents of that address. Field 2 is a graphic representation of
the contents of the displayed address. If that address holds an ASCII character, then
the graphic will be the letter, number, or punctuation mark specified by the byte.
Otherwise, that graphic will probably be a special graphic character from your com-
puter’s nonstandard (ie: nonASCII) character set.

Fields 3 thru 6 represent four of the 6502 registers: A (the Accumulator), X (the
X Register), Y (the Y Register), and P (the Processor Status Register). When you type

64 BEYOND GAMES

G to execute a program, the 6502 registers will be loaded with the displayed values
before the program is called; when control returns to the monitor, the contents of
the 6502 registers at that time will be displayed on the screen. '

In addition to the seven fields mentioned above, the Visible Monitor’s display
includes an arrow pointing up at one of the fields. In order to modify a field, you
must make the arrow point to that field. To move the arrow from one field to
another, I've chosen to use the GREATER THAN (>) and LESS THAN (<) keys.
Touching the GREATER THAN key will move the arrow one field to the right, and
depressing the LESS THAN key will move the arrow one field to the left. (If my
computer had a cursor pad, I would use the cursor-left and the cursor-right keys to
move the arrow from field to field, but it doesn't have a cursor pad, so GREATER
THAN and LESS THAN have to fill the bill. You may assign the field-movement
functions to any keys on your system, but GREATER THAN and LESS THAN are

reasonable choices, because they look like arrows pointing right and left, respective-
ly.)

I've chosen to use the space bar to step forward through memory and the return
key to step backward through memory, but you may choose other keys if you prefer
(eg: the “+" and “~—" keys). The space bar seems reasonable to me for stepping for-
ward through memory, because on a typewriter I press the space bar to bring the
next character into view; RETURN seems reasonable for stepping backward through
memory because RETURN is almost synonymous with “back up,” and that’s what I
want it for: to back up through memory. With such a display and key functions, we
ought to have a very handy monitor.

Data

Before we develop the structure and code of the Visible Monitor, let’s decide
what variables and pointers it must have.

The Visible Monitor must have some way of knowing what address to display
in field 0. It can do this by maintaining a pointer to the currently selected address.
Because it will specify the currently selected address, let's call this pointer SELECT.
Then, when the user presses the spacebar, the Visible Monitor need only increment
the SELECT pointer. When the user presses RETURN, the Visible Monitor need only
decrement the SELECT pointer. That will enable the user to step forward and back-
ward through memory.

The user will also want to modify the 6502 register images. Since there are four
register images shown in figure 6.2, let’s have 4 bytes, one for each register image. If
we keep them in contiguous memory, we can refer to the block of register images as
REGISTERS, or simply as REGS (since REGISTERS is longer than six characters, the
maximum label length acceptable to the assembler used in the preparation of this
book).

Finally, the Visible Monitor must keep track of the current field. Since there can

THE VISIBLE MONITOR 65

only be one current field at a time, we can have a variable called FIELD, whose value
tells us the number of the current field. Then, when the user wants to select the next
field, the Visible Monitor need only increment FIELD, and when the user wants to
move the arrow to the previous field, the Visible Monitor need only decrement
FIELD. If FIELD gets out of bounds (any value that is not 0 thru 6), then the Visible
Monitor should assign an appropriate value to FIELD. The following code declares
these variables in the form acceptable to an OSI 6500 Assembler:

Variables
SELECT WORD 0 This points to the currently selected
byte.
REG.A .BYTE 0 REG.A holds the image of Register A
(the Accumulator).
REG.X BYTEO REG.X holds the image of Register X.
REG.Y .BYTE 0 REG.Y holds the image of Register Y.
REG.P .BYTE O REG.P holds the image of the Processor
Status Register.
FIELD BYTE O FIELD holds the number of the current
field.
REGS = REG.A
Structure

I want to keep the Visible Monitor highly modular, so it can be easily extended
and modified. I have therefore chosen to develop the Visible Monitor according to
the structure shown in figure 6.3. Clearly, the Visible Monitor loops. It places the
monitor display on the screen. It then updates the information in that display by get-
ting a keystroke from the user and performing an action based on that keystroke. It
does this over and over.

!

DISPLAY

UPDATE
|

Figure 6.3: A simple structure for interactive display programs.

66 BEYOND GAMES

With this flowchart as a guide, we can now write the source code for the top
level of the Visible Monitor:

VISMON
VISMON PHP Save caller’s status flags.
LOOP JSR DSPLAY ~ Put monitor display on screen.
JSR UPDATE Get user request and handle it.
CLC g
BCC LOOP Loop back to display...

This is only the top level of the Visible Monitor; it won't work without two sub-
routines: DSPLAY and UPDATE. So it looks as if we've traded the task of writing
one subroutine for the task of writing two. But by structuring the monitor in this
way, we make the monitor much easier to develop, document, and debug.

Which subroutine should we write first? Let's start with the DSPLAY module,
since the display is visible to the user, and the Visible Monitor must meet the user’s
needs. Once we know how to drive the display, we can write the UPDATE routine.

Monitor Display

Figure 6.2 shows the display we want to present on the video screen. As you can
see, this display consists of three lines of characters: the label line, the data line, and
the arrow line. The label line labels four of the fields in the data line, using the char-
acters A, X, Y, and P. The data line displays an address, the contents of that address
(both in hexadecimal representation and in the form of a graphic), and then displays
the values of the four registers in the 6502. Underneath the data line, the arrow line
provides one arrow pointing up at one of the fields in the data line.

Since the display is defined totally in terms of the label line, the data line, and
the arrow line, we are ready now to diagram the top level of monitor display. See
figure 6.4.

With the flowchart in figure 6.4 as a guide, we can now write source code for
the top level of the DSPLAY subroutine:

THE VISIBLE MONITOR 67

START

CLEAR PORTION
OF SCREEN

DISPLAY LABEL LINE

DISPLAY DATA LINE

DISPLAY ARROW LINE

RETURN

Figure 6.4: Routine to display the monitor information.

DSPLAY
DSPLAY JSR CLRMON Clear monitor’s portion of screen.
JSR LINE.1 Display the Label Line.
JSR LINE.2 Display the Data Line.
JSR LINE.3 Display the Arrow Line.
RTS Return to caller.

Now instead of one subroutine (DSPLAY), it looks as if we must write four sub-
routines: CLRMON, LINE.1, LINE.2, and LINE.3. But as the subroutines grow in
number, they shrink in difficulty.

Before we put up any of the monitor’s display, let’s clear that portion of the
screen used by the monitor’s display. Then we can be sure we won't have any gar-
bage cluttering up the monitor display.

Since we already have a utility to clear X columns and Y rows from the current
location on the screen, CLRMON can just set TV.PTR to the upper-left corner of the
screen, load X and Y with appropriate values, and then call CLR.XY. Here's source
code:

68 BEYOND GAMES

LDX #2

LDY #2

JSR TVTOXY
LDX #25
LDY #3

JSR CLR.XY
RTS

CLRMON

Display Label Line

Set TV.PTR to column 2, row 2 of
screen.

We'll clear 25 columns
and 3 rows.

Here we clear them.
Return to caller.

The subroutine LINE.1 must put the label line onto the screen. We'l store the
character string “A X Y P” somewhere in memory, at a location we may refer to as
LABELS. Then LINE.1 need only copy 10 bytes from LABELS to the appropriate
location on the screen. That will display the LABEL line for us:

LINE.1 LDX #13
LDY #2

JSR TVTOXY

LDY #0

STY LBLCOL
LDA LABELS,Y
JSR VUCHAR
INC LBLCOL
LDY LBLCOL
CPY #10

BNE LBLOOP
RTS

BYTE ‘A X’
BYTE Y P’

.BYTE 0

LBLOOP

LABELS

LBLCOL

Display Data Line

LINE.I

X-coordinate of Label “A”.
Y-coordinate of Label “A”.
Place TV.PTR at coordinates given by
X,Y registers.

Put labels on the screen:
Initialize label column counter.
Get a character and

put its graphic on the screen.
Prepare for next character.
Use label column as an index.
Done last character?

If not, do next one.

Return to caller.

These are the characters

to be copied to the screen.
This is a counter.

Displaying the data line will be more difficult than displaying the label line, for
two reasons. First, the data to be displayed will change from time to time, whereas
the labels in the label line need never change. Second, most fields in the data line dis-

THE VISIBLE MONITOR 69

play data in hexadecimal representation. To display 1 byte as two hexadecimal
digits requires more work than is needed to display 1 byte as one ASCII character.
However, we have a screen utility (VUBYTE) to do that work for us. In fact, we
have enough screen utilities to make even the display of seven fields of data quite
straightforward. Following, then, is the display data-line routine:

LINE.2

VUREGS

70 BEYOND GAMES

LINE.2

LDX #2 Load X register with X-coordinate for
start of data line.

LDY #3 Load Y register with Y-coordinate for
data line.

JSR TVTOXY Set TV.PTR to point to the start of the
data line.

LDA SELECT+1 Display high byte of the

JSR VUBYTE currently selected address.

LDA SELECT Display low byte of the

JSR VUBYTE currently selected address.

JSR TVSKIP Skip one space after address field.

JSR GET.SL Look up value of the currently selected
byte.

PHA Save it.

JSR VUBYTE Display it, in hexadecimal format, in
field 1.

JSR TVSKIP Skip one space after field 1.

PLA Restore value of currently selected byte.

JSR VUCHAR Display that byte, in graphic
form, in field 2.

JSR TVSKIP Skip one space after field 2.
Display 6502 register images in fields 4
thru 7:

LDX #0

LDA REGS,X Look up the register image.

JSR VUBYTE Display it in hexadecimal format.

JSR TVSKIP Skip one space after hexadecimal field.

INX Get ready for next register...

CPX #4 Done 4 registers yet?

BNE VUREGS If not, do next one...

RTS If all registers displayed, return.

Get Currently Selected Byte

Note that the subroutine LINE.2, which puts up the second line of the Visible
Monitor's display, does not itself “know” the value of the currently selected byte.
Rather, it calls a subroutine, GET.SL, which returns the contents of the address
pointed to by SELECT. That makes life easy for LINE.2, but how does GET.SL
work?

If SELECT were a zero-page pointer, GET.SL could be a very simple subroutine
and take advantage of the 6502’s indirect addressing mode: -

GET.SL LDY #0 Get the zeroth byte above
LDA (SELECT),Y the address pointed to by SELECT.
RTS Return to caller.

However, SELECT is not a zero-page pointer; it's up in page $12. And the 6502
doesn't have an addressing mode that will let us load a register using any pointer not
in the zero page. So how can we see what's in the address pointed to by SELECT?

We can do it in two steps. First, we'll set a zero-page pointer equal in value to
the SELECT pointer, so it points to the same address; and then, since we already
know how to load the accumulator using a zero-page pointer, we'll load the ac-
cumulator using the zero-page pointer that now equals SELECT. Let’s call that zero-
page pointer GETPTR, since it will allow us to get the selected byte. Using such a
strategy, GET.SL can look like this: '

GET.SL LDA SELECT Set GETPTR equal to

STA GETPTR SELECT: first the low byte;

LDA SELECT +1 then the

STA GETPTR+1 high byte.

LDY #0 Get the zeroth byte above

LDA (SELECT),Y the address pointed to by GETPTR.

RTS Return to caller, with A bearing the con-
tents of the address specified by
SELECT.

This second attempt at GET.SL will load the accumulator with the currently
selected byte, even when SELECT is not in the zero page. However, beware because
by setting GETPTR equal to SELECT, GET.SL changes the value of GETPTR. This
can be very dangerous. What, for example, if some other program were using
GETPTR for something? That other program would be sabotaged by GET.SL’s ac-
tions. If we let GET.SL change the value of GETPTR, then we must make sure that

THE VISIBLE MONITOR 71

no other program ever uses GETPTR.

Such policing is hard work — and almost impossible if you want your software
to run on a system in conjunction with software written by anyone else. Since I want
the Visible Monitor to share your system’s ROM input/output routines, and since I
have no way of knowing what zero-page addresses those routines may use, I must
refrain from using any of those zero-page bytes myself. When I have to use zero-
page bytes — as now, so that GET.SL can use the 6502's indirect addressing mode —
I must restore any zero-page bytes I've changed.

Therefore, GET.SL must be a four-part subroutine, which will: 1) save
GETPTR; 2) set GETPTR equal to SELECT; 3) load the accumulator with the con-
tents of the address pointed to by GETPTR; and finally, 4) restore GETPTR to its
original value. This larger, slower, but infinitely safer version of GET.SL looks like

this:

GET.SL LDA GETPTR Save GETPTR
PHA on stack and
LDX GETPTR+1 in X register.
LDA SELECT Set GETPTR
STA GETPTR equal to
LDA SELECT+1 SELECT.
STA GETPTR+1
LDY #0 Get the contents of the

LDA (GETPTR),Y
TAY

byte pointed to by SELECT,
and save it in Y register.

PLA Restore GETPTR

STA GETPTR from stack

STX GETPTR+1 and from X register.

TYA Restore contents of current byte from
temporary storage in Y to A.

RTS Return with contents of currently

Display Arrow Line

selected byte in accumulator and with
the zero page preserved.

This routine displays an up-arrow directly underneath the current field:

72 BEYOND GAMES

LINE.3

LINE.3 IDX #2
LDY #4
JSR TVTOXY
LDY FIELD
SEC
CPY #7
BCC FLD.OK
LDY #0
STY FIELD

FLD.OK LDA FELDS,Y
TAY
LDA ARROW
STA (TV.PTR),Y
RTS

FIELDS BYTE 3,6,8
BYTE $0B,$0E
BYTE $11,$14

Set TV.PTR to
beginning of

arrow line.

Look up current field.
If it is out of bounds,
set it to

default field

(the address field).

Look up column number for current
field.

Use that column number as an index in-
to the row.

Load accumulator with your system’s
graphic code for up-arrow.

Store up-arrow code in the Yth column
of the arrow line.

Return to caller.

This data area shows which column
should get an up-arrow to indicate

any one of fields 0 thru 6. Changing one
of these values will cause the up-arrow
to appear in a different column when in-
dicating a given field.

Now that we have all the routines we need for the monitor display, let us look
at how they fit together to form a structure. Here is the hierarchy of subroutines in

DSPLAY:

MONITOR DISPLAY
DISPLAY LABEL LINE
DISPLAY DATA LINE
GET.SL
VUBYTE
ASCII
TVPLUS
TVSKIP
DISPLAY ARROW LINE

THE VISIBLE MONITOR 73

When DSPLAY is called, it will clear the top four rows of the screen, display
labels, data, the arrow, and then return. How long do you think it will take to doall
this? The code may look cumbersome, but the display is quick!

Monitor Update

" The UPDATE routine is the monitor subroutine that executes functions in
response to various keys. The basic key functions we want to implement are as

follows:
Key Function
GREATER THAN Move arrow one field to the right.
LESS THAN Move arrow one field to the left.
SPACEBAR Increment address being displayed.
(Step forward through memory.)
RETURN Decrement address being displayed.

(Step backward through memory.)
If the arrow is in fields 1, 3, 4, 5, or 6, then, for

keys 0 thru 9, A thru F Roll a hexadecimal character into the field pointed
to by the arrow.

If the arrow is under field 2 (the graphic field) then, for

All keys Enter the key's character into field 2 (ie: enter the
key’s character into the displayed address).

Since the video display need not be refreshed (redisplayed within a given time)
by the processor, the UPDATE routine need not return within a given amount of
time. The UPDATE routine, therefore, can wait indefinitely for a new character
from the keyboard, and then take appropriate action.

We can diagram these functions as shown in figure 6.5. You add additional
functions to this routine by adding additional code to test the input character. You
then call the appropriate function subroutine which you write.

74 BEYOND GAMES

| e |
I 1s montTOR |

|
e J

A
APPROPRIATE
SUBROUTINES

| IN CHARACTER |-==—=—
MODE i

Figure 6.5: Flowchart for the monitor-update routine.

GET A CHAR-
ACTER FROM
KEYBOARD

MOVE ARROW
RIGHT
BY ONE FIELD

MOVE ARROW
LEFT
BY ONE FIELD

DECREMENT
DISPLAYED
ADDRESS

CALL
DISPLAYED
ADDRESS

STORE
CHARACTER
IN DISPLAYED
ADDRESS

SAVE
CHARACTER
ON STACK

ROLL BINARY

EQUIVALENT OF
CHARACTER INTO
CURRENT FIELD

CHARACTER |
'

FROM

STACK

POP CHARACTER
FROM STACK

(RETURN)

THE VISIBLE MONITOR 78

Get a Key

First we need a way to get a key from the keyboard. I assume that your system
has a read-only memory routine to perform this function. Place the address of that
routine (see the appropriate appendix for your system) into a pointer called
ROMKEY located at address $1008. Once you have set the ROMKEY pointer, you
can get a key by calling a subroutine labeled GETKEY, which simply transfers con-
trol to the ROM routine whose address you placed in ROMKEY:

GETKEY JMP (ROMKEY)

Now that we have a way to get a key from the keyboard, we should be able to
write source code for the monitor-update routine:

Update
UPDATE JSR GETKEY Get a character from the keyboard.
IF.GRTR CMP #> Is it the GREATER THAN key?
BNE IE.LSR If not, perform next test.
NEXT.F INC FIELD If so, select the next field.
LDA FIELD If arrow was at the right-most field,
CMP #7 place it underneath the left-most
BNE EXIT.1 field.
LDA #0
STA FIELD
EXIT.1 RTS Then return. ‘
- IF.LSR CMP #'< Is it the LESS THAN key?
BNE IF.SP If not, perform next test.
PREV.F DEC FIELD If so, select previous field:
BPL EXIT.2 the field to the left of the
LDA #6 current field. If arrow was at
STA FIELD left-most field, place it under .
right-most field.
EXIT.2 RTS Then return.
IE.SP CMP #SPACE Is it the space bar?
BNE IF.CR If not, perform next test.
INC.SL INC SELECT If so, step forward through
BNE EXIT.3 memory, by incrementing the
INC SELECT+1 pointer that specifies the displayed
address.
EXIT.3 RTS Then return.
IF.CR CMP #CR Is it carriage return?
BNE IFCHAR If not, perform next test.

76 BEYOND GAMES

DEC.SL

NEXT.1

IFCHAR

PUT.SL

IF.GO

GO

LDA SELECT
BNE NEXT.1
DEC SELECT+1
DEC SELECT
RTS

LDX FIELD

CPX #2

BNE IF.GO

TAY

LDA TV.PTR
PHA
LDX TV.PTR+1

LDA SELECT
STA TV.PIR
LDA SELECT+1
STATV.PTR+1
TYA

LDY #0

STA (TV.PTR),Y
STX TV.PTR+1
PLA

STA TV.PTR
RTS

RTS

CMP #G
BNE IF.HEX
LDY REG.Y
LDX REG.X
LDA REG.P
PHA

LDA REG.A
PLP

JSR CALLSL

PHP
STA REG.A
STX REG.X

If so, step backward through
memory by decrementing the
pointer that selects the
address to be displayed.
Then return.

Is arrow underneath the
character field (field 2)7°

If not, perform next test.

Put the contents of A into the currently
selected address.

Use Y to hold the character we'll put in
the selected address.

Save zero-page pointer TV.PTR

on stack and in X before we

use it to put character in selected ad-
dress.

Set TV.PTR equal to SELECT,

so it points to the

currently selected

address.

Restore to A the character we'll put in
the selected address.

Store it in the

selected address.

Restore TV.PTR to

its original value.

Return to caller, with character origi-
nally in A now in the selected address
and with zero page unchanged.

Then return,

Is it ‘G’ for GO?

If not, perform next test.

If so, load the 6502 registers

with their displayed images.

Call the subroutine at the selected ad-
dress.

When subroutine returns,

save register values in register
images.

THE VISIBLE MONITOR 77

CALLSL

IF.HEX

ROLLIN

ADRFLD
LOOP.1

NOTADR

ROL.SL

78 BEYOND GAMES

STY REG.Y
PLA

STA REG.P
RTS

JMP (SELECT)

PHA
JSR BINARY

BMI OTHER

TAY

PLA

TYA

LDX FIELD
BNE NOTADR

LDX #3

CLC

ASL SELECT
ROL SELECT+1
DEX

BPL LOOP.1
TYA

ORA SELECT
STA SELECT
RTS

CPX #1

BNE REGFLD

AND #$0F
PHA

JSR GET.SL
ASL A

ASL A

ASL A

ASL A
AND #$F0
STA TEMP

Then return to caller.

Call the subroutine at the selected ad-
dress.

Save keyboard character.

If accumulator holds ASCII character
for O thru 9 or A thru F, BINARY
returns the binary representation of that
hexadecimal digit. Otherwise BINARY
returns with A = FF and the minus flag
set.

If accumulator did not hold a hexa-
decimal character, perform next test.

Roll A into a hexadecimal field.

Is arrow underneath the address field
(field 0)7 If not, the arrow must be
under another hexadecimal field.

Since arrow is underneath the address
field, roll accumulator’s hexadecimal
digit into the address field by rolling it
into the pointer that selects the
displayed address.

Then return.

Is arrow underneath field 17

If not, it must be underneath a register
image.

Roll A’s 4 LSB into contents

of currently selected byte.

Get the contents of the selected
address and shift left 4 times.

Save it in a temporary variable.

PLA Get original A’s 4 LSB and
ORA TEMP OR them with shifted contents of
selected address.
JSR PUT.SL Store the result in the selected
RTS address and return.
TEMP .BYTEO This byte holds the temporary variable
used by ROL.SL.
REGFLD DEX The arrow must be underneath a
DEX register image — field 3, 4, 5, or 6.
DEX
LDY #3

LOQOP.2 CLC Roll accumulator’s hexadecimal digit
ASL REGS, X into appropriate register image...
DEY
BPL LOOP.2
ORA REGS, X
STA REGS, X
RTS ...Then return.

OTHER PLA Restore the raw keyboard character that

we saved on the stack,
CMP#Q Is it ‘Q’ for Quit?
BNE NOT.Q If not, perform next test,
PLA If so, return to
PLA the caller of
PLP
RTS VISMON.

NOT.Q JSR DUMMY Replace this call to DUMMY with a call
to any other subroutine that extends the
functionality of the Visible Monitor,

DUMMY RTS Return to caller,

ASCIl to BINARY Conversion

The Visible Monitor's UPDATE subroutine requires a subroutine called
BINARY, which will determine if the character in the accumulator is an ASCII O
thru 9 or A thru F, and, if so, return the binary equivalent. On the other hand, if the
accumulator does not contain an ASCII 0 thru 9 or A thru F, BINARY will return an
error code, $FF, Thus:

THE VISIBLE MONITOR 79

If accumulator holds BINARY will return

$30 (ASCII “0") $00
$31 (ASCII “17) $01
$32 (ASCII “2") $02
$33 (ASCII “3") . $03
$34 (ASCII “4”) $04
$35 (ASCII “5”) $05
$36 (ASCII “6”) $06
$37 (ASCII “7") $07
$38 (ASCII “8") - $08
$39 (ASCII “9”) $09
$41 (ASCII “A") $0A
$42 (ASCII “B") $0B
$43 (ASCII “C") $0C
$44 (ASCII “D") $0D
$45 (ASCII “E”) $OE
$46 (ASCII “F") $OF
Any other value $FF

We could solve this problem with a table, BINTAB, for BINary TABle. If
BINTAB is at address $2000, then $2000 would contain a $FF, as would $2001,
$2002, and all addresses up to $202F, because none of the ASCII codes from $00 thru
$2F represent any of the characters 0 thru 9 or A thru F. On the other hand, address
$2030 would contain 00, because $30 (its offset into the table) is an ASCII zero, so
$2030 gets its binary equivalent: $00, a binary zero. Similarly, since $31 is an ASCII
‘1," address $2031 would contain a binary ‘1:" $01. $2032 would contain a $02; $2033
would contain a $03, and so on up to $2039, which would contain a $09.

Addresses $203A thru $2040 would each contain $FF, because none of the
ASCII codes from $3A thru $40 represent any of the characters 0 thru 9 or A thru F.
On the other hand, address $2041 would contain a $0A, because $41 is an ASCII ‘A’
and $0A is its binary equivalent: a binary ‘A." By the same reasoning, $2042 would
contain $0B; $2043 would contain $0C, and so on up to $2046, which would contain
$0C, and so on up to $2046, which would contain $0F. Addresses $2047 thru $20FF
would contain $FFs because none of the values $47 thru $FF is an ASCII 0 thru 9 or
A thru F.

To use such a table, BINARY need only be a very simple routine:

BINARY TAY Use ASCII character as an index.
LDA BINTAB,Y Look up entry in BINary TABle.
RTS Return with it.

80 BEYOND GAMES

This is a typical example of a fast and simple table lookup code. But it requires a
256-byte table. Perhaps slightly more elaborate code can get by with a smaller table,
or do away altogether with the need for a table. Such code must calculate, rather
than look up, its answers. Let’s look closely at the characters we must convert.

Legal inputs will be in the range $30 thru $39 or the range $41 thru $46. An in-
put in the range $30 thru $39 is an ASCII 0 thru 9, and subtracting $30 from such an
input will convert it to the corresponding binary value. An input in the range $41
thru $46 is an ASCII A thru F, so subtracting $36 will convert it to its corresponding
binary value. For example, $41 (an ASCII ‘A’) minus $36 equals $0A (a binary ‘A").
Any value not in either of these ranges is illegal and should cause BINARY to return
a $FF.

Given these input/output relationships, BINARY need only determine whether
the character in the accumulator lies in either legal range, and if so perform the ap-
propriate subtraction, or, if the accumulator is not in a legal range, then return a

$FF.

Here's some code for BINARY which makes these judgments, thus eliminating
the need for a table:

BINARY SEC Prepare to subtract.

SBC #%30 Subtract $30 from character.

BCC BAD If character was originally less than $30,
it was bad, so return $FF.

CMP #$0A Was character in the range $30 thru
$397 ,

BCC GOOD If so, it was a good input, and we'v
already converted it to binary by sub-
tracting $30, so we'll return now with
the character’s binary equivalent in the
accumulator.

SBC #7 Subtract 7.

CMP #$10 Was character originally in the range
$41 thru $46?

BCS GOOD If so, it was a good input, and we've
already converted it to binary by sub-
tracting $37, so we'll return now with
the character’s binary equivalent in the
accumulator.

BAD LDA #$FF Indicate a bad input by returning

RTS minus, with A holding $FF.

GOOD LDX #0 Indicate a good input by returning

RTS plus, with A holding the character’s

binary equivalent.

THE VISIBLE MONITOR 81

Visible Monitor Utilities

The Visible Monitor makes the following subroutines available to external

callers:

BINARY

CALLSL
DEC.SL
GETKEY

GET.SL
GO

INC.SL
PUT.SL
VISMON

Determine whether accumulator holds the ASCII represen-
tation for a hexadecimal digit. If so, return binary represen-
tation for that digit. If not, return an error code ($FF).

Call the currently selected address as a subroutine.

Select previous address, by decrementing SELECT pointer.
Get a character from the keyboard by calling machine’s
read-only memory routine indirectly.

Get byte at currently selected address.

Load registers from displayed images and call displayed ad-
dress. Upon return, restore register images from registers.
Select next byte (increment SELECT pointer).

Store accumulator at currently selected address.

Let user give the Visible Monitor commands until user
presses ‘Q’ to quit.

Figure 6.6 illustrates the hierarchy of the various routines of the Visible Monitor,
some of which are detailed in later chapters.

VISIBLE MONITOR

DISPLAY UPDATE

J
CLRMON

TVTOXY CLR.XY

LINE.1

I | |
LINE. 2 LINE.3 CALLIT BINARY EXTEND

TVTOXY TVTOXY VUBYTE TVPLUS TVTOXY ROMKEY

Figure 6.6: A hierarchy of the routines of the Visible Monitor.

82 BEYOND GAMES

Using the Visible Monitor

Use the minimal machine-language monitor on your computer to enter the Visi-
ble Monitor into memory; then have your monitor pass control to the Visible
Monitor. The Visible Monitor display should appear in the upper portion of your
video display. If it's not fully visible, adjust the value HOME in the screen para-
meters (HOME is the pointer at $1000). Use the GREATER THAN and LESS’
THAN character keys to move the arrow from field to field. Place the arrow under
field 0 and roll hexadecimal characters into the address. Select an address in the
lower portion of screen memory and use the Visible Monitor to place characters on
the screen. Enter characters to the screen using both field 1 (the hexadecimal data
field), and field 2 (the character field).

Select the address of the TVT routine in your system. Press G to call that sub-
routine. You should see the character in the accumulator print on the screen. Try ex-
ploring other memory locations. Try writing to a read-only memory address. Why
doesn't that work? Try writing to the upper portion of the screen. Why doesn't that
work?

THE VISIBLE MONITOR 83

Chapter 7:
Print Utilities

The Visible Monitor is a useful tool for examining and modifying memory, but
at the moment it's mute: it can't “talk” to you except through the limited device of
the fields in its display. You can use the Visible Monitor’s character entry feature to
place ASCII characters directly into screen memory, thus putting messages on the
screen manually. However, as yet we have no subroutines to direct a complete
message, report, or other string of characters to the screen, to a printer, or to any
other output device.

Most programs require some means of directing messages to the screen, thus
providing the user with the basis for informed interaction, or to a printer, thus pro-
viding a record of that interaction. This chapter presents a set of print utilities to per-
form these functions.

Fortunately, there are subroutines in your computer’s operating system to per-
form character output. The Apple, Atari, OSI and PET computers each feature a
routine to print a character on the screen, thus simulating a TVT (TeleVision
Typewriter), and they each feature another routine to send a character to the device
connected to the serial output port: usually a printer. I don't plan to reinvent those
wheels in this chapter. Rather, the chapter’s software will funnel all character output
through code that calls the appropriate subroutine in your computer’s operating
system. And since we're going to have code that calls the two standard character
output routines, why not provide a hook to a user-written character output routine,
as well? Such a feature will make it trivial for you to direct any character output (eg:
messages, hexdumps, disassembler listings, etc) to the screen and the printer, or to
any special output device you may have on your system, provided that you've writ-
ten a subroutine to drive that device.

84 BEYOND GAMES

Selecting Qutput Devices

It should be possible for any program to direct character output to the screen,
and/or to the printer, and/or to the user-written subroutine. Therefore, we'll need
subroutines to select and deselect (stop using) each of these devices and to select and
deselect all of these devices. Let's call these routines TVT.ON, TVTOFF, PR.ON,
PR.OFF, USR.ON, USR.OFF, ALL.ON, and ALLOFF. With these subroutines, a
calling program can select or deselect output devices individually or globally.

The line of source code which will select the TVT as an output device follows:

JSRTVT.ON

This line will deselect the TVT:

JSR TVTOFF

That's a pretty straightforward calling sequence.

The select and deselect subroutines will operate on three flags: TVT, PRINTR,
and USER. The TVT flag will indicate whether the screen is selected as an output
device; the PRINTR flag will indicate whether the printer is selected as an output
device; and the USER flag will indicate whether the user-provided subroutine is
selected as an output device,

For convenience, we'll have a separate byte for each flag and define a flag as
“off” when its value is zero, and “on” when its value is nonzero.

Using this definition of a flag, we can select a given device simply by storing a
nonzero value in the flag for that device; we can deselect a device simply by storing a
zero in the flag for that device.

The definitions for the flags and listings of the select and deselect subroutines
follow:

Device Flags

OFF = 0 When a device flag = zero, that device
is not selected.
ON = $FF When a device flag = $FF, that device is
selected.
TVT .BYTE ON This flag is zero if TVT is not selected;
nonzero otherwise. Initially, the TVT is
selected.

PRINT UTILITIES 85

PRINTR

USER

TVT.ON

TVTOFF

PR.ON

PR.OFF

USR.ON

USROFF

ALL.ON

ALLOFF

86 BEYOND GAMES

.BYTE OFF

.BYTE OFF

This flag is zero if the PRINTR is not
selected; nonzero otherwise. Initially,
the printer is not selected.

This flag is zero if the user-provided
output subroutine is not selected;
nonzero otherwise. Initially, the user-
provided function is deselected.

Select and Deselect Subroutines

LDA #ON
STA TVT
RTS

LDA #OFF
STA TVT
RTS

LDA #ON
STA PRINTR
RTS

LDA #OFF
STA PRINTR
RTS

LDA #ON
STA USER
RTS

LDA #OFF
STA USER

RTS

JSR TVT.ON
JSR PR.ON
JSR USR.ON
RTS

JSR TVTOFF
JSR PR.OFF
JSR USROFF
RTS

Select TVT as an output device

by setting the flag that indicates

the “select” state of the TVT.

Deselect TVT as an output device

by clearing the flag that indicates

the “select” state of the TVT.

Select printer as an output device

by setting the flag that indicates

the “select” state of the printer.
Deselect printer as an output device

by clearing the flag that indicates

the “select” state of the printer.

Select user-written subroutine as an
output device by setting the flag that
indicates the “select” state of the output
routine provided by the user.

Deselect user-written subroutine

as an output device by clearing the flag
that indicates the “select”

state of the output routine provided by
the user.

Select all output devices by selecting
each output device individually.

Deselect all output devices by
deselecting each output device
individually.

A General Character-Print Routine

Now that a calling routine can select or deselect any combination of output
devices, we need a routine that will output a given character to all currently selected -
output devices. Let’s call this routine PR.CHR, because it will PRint a CHaRacter.

All the software in this book that outputs characters will do so by calling
PR.CHR; none of that software will call your system’s character-output routines
directly. That makes the software in this book much easier to maintain. If you ever
replace your system’s TVT output routine or its printer-output routine with one of
your own, you won't have to change the rest of the software in this book. That soft-
ware will continue to call PR.CHR. However, if many lines of code in many places
called your system'’s character-output routines directly, then replacing a read-only
memory output routine with one of your own would require you to change many
operands in many places. Who needs to work that hard? Funneling all character
output through one routine, PR.CHR, means we can improve our character output
in the future without difficulty.

When it is called, PR.CHR will look at the TVT flag. If the TVT flag is set, it
will call your system’s TVT output routine. Then it will look at the PRINTR flag. If
the PRINTR flag is set, it will call your system'’s routine that sends a character to the
serial output port. Finally, it will look at the USER flag. If the USER flag is set, it will
call the user-provided character-output routine. Having done all of this, PR.CHR
can return. Figure 7.1 is a flowchart for PR.CHR.

START

CALL SYSTEM'S
TVT_OUTPUT
ROQUTINE

]

Figure 7.1: To print a character to all

currently selected output devices
(PR.CHR, a general character-output @”}E’% YeS |
routine). €
NO CALL SYSTEM'S
PRINTER

QUTPUT
ROUTINE

UsER
FLAG SET D152
» |

NO

RETURN }

PRINT UTILITIES 87

Output Vectors

If the character output routines are Jocated at different addresses in different
systems, how can PR.CHR know the addresses of the routines it must call? It can't.
But it can call those subroutines indirectly, through pointers that you set.

You must set three pointers, or output vectors, so that they point to the
character output routines in your system. A pointer called ROMTVT must point to
your system’s TVT output routine; a pointer called ROMPRT must point to your
system’s routine that sends a character to the serial output port; and a pointer called
USROUT must point to your own, user-written, character-output routine. (If you
have not written a special character-output subroutine, USROUT should point to a
dummy routine which is nothing but an RTS instruction.) Then, if you ever relocate
your TVT output routine, your printer-output routine, or your user-written output
routine, you'll only have to change one output vector: ROMTVT, ROMPRT, or
USROUT. Everything else in this book can remain the same.

ROMTVT, ROMPRT, and USROUT need not be located anywhere near
PR.CHR. That means we can keep all the pointers and data specific to your system
in one place. We can store the output vectors with the screen parameters, in a single
block of memory called SYSTEM DATA. See Appendix B1, B2, B3, or B4 for your
computer.

The source code of the PR.CHR routine follows:

PR.CHR
PR.CHR STA CHAR Save the character.
BEQ EXIT If it's a null, return without printing it.
LDATVT Is TVT selected?
BEQ IF.PR If not, test next device.
LDA CHAR If so, send character indirectly to
JSR SEND.1 system’s TVT output routine.
IF.PR LDA PRINTR Is printer selected?
BEQ IF.USR If not, test next device.
LDA CHAR If so, send character indirectly
JSR SEND.2 to system’s printer driver. -
IF.USR LDA USER Is user-written output subroutine
selected?
BEQ EXIT If not, test next device.
LDA CHAR If so, send character indirectly
JSR SEND.3 to user-written output subroutine.
EXIT RTS Return to caller.
CHAR BYTEO This byte holds the last character passed
to PR.CHR.

a0 nCVNND GAMES

SEND.1
SEND.2
SEND.3

Vectored Subroutine Calls
JMP (ROMTVT)

JMP (ROMPRT)
JMP (USROUT)

Specialized Character-Output Routines

Given PR.CHR, a general character-output routine, we can write specific
character-output routines to perform several commonly required functions. For ex-
ample, it's often necessary for a program to print a carriage return and a line feed,
thus causing a new line, or to print a space, or to print a byte in hexadecimal format.
Let’s develop several dedicated subroutines to perform these functions. Since each of
these subroutines will call PR.CHR, their output will be directed to all currently
selected output devices.

Here are source listings for a few such subroutines: CR.LF, SPACE, and

PR.BYT:

CR.LF

SPACE

PR.BYT

PRINT A CARRIAGE RETURN-LINE FEED

CR = $0D ASCII carriage return character.
LF = $0A ASCII line feed character.
LDA #CR Send a carriage return and a
JSR PR.CHR line feed to the currently selected
LDA #LF device(s).
JSR PR.CHR
RTS Return.
PRINT A SPACE
LDA #%$20 Load accumulator with ASCII space.
JSR PR.CHR Print it to all currently selected output
devices.
RTS Return.
PRINT BYTE
PHA Save byte.
LSR A Determine ASCII for the 4 MSB (most-

PRINT UTILITIES 89

significant bits) in the

ISR A byte:

LSR A

LSR A

JSR ASCII

JSR PR.CHR Print that ASCII character to the current
device(s).

PLA Determine ASCII for the 4 LSB (least-
significant bits) in the

JSR ASCIL byte that was passed to this subroutine.

JSR PR. CHR Print that ASCII character to the current
device(s).

RTS Return to caller.

Repetitive Character Output

Since some calling programs might need to output more than one space, a new
line, or other character, why not have a few print utilities to perform such repetitive
character outputs? In each case, the calling program need only load the X register
with the desired repeat count. Then it would call SPACES to print X spaces, CR.LFS
to print X new lines, or CHARS to print the character in the accumulator X times.
Calling any of these routines with zero in the X register will cause no characters to be
printed. To output seven spaces, a calling program would only have to include the
following two lines of code:

LDX #7
JSR SPACES

To output four blank lines, a program would require these two lines of code:

LDX #4
JSR CR.LFS

To output ten asterisks, a program would need these three lines of code:

LDA #*
LDX #10
JSR CHARS

90 BEYOND GAMES

In order to support these calling sequences, we'll need three small subroutmes
SPACES, CR.LFS, and CHARS:

SPACES
CHARS
RPLOOP

RPTEND

CR.LFS
CRLOOP

END.CR
REPEAT

Print X Spaces; Print X Characters

LDA #$20
STX REPEAT
PHA

LDX REPEAT -

BEQ RPTEND
DEC REPEAT
JSR PR.CHR

PLA
CLC
BCC RPLOOP
PLA
RTS

Load accumulator with ASCII space.

. Initialize the repeat counter.

Save character to be repeated.

Has repeat counter timed out yet?

If so, exit. If not,

decrement repeat counter.

Print character to all currently selected
output devices.

Loop back to repeat
character, if necessary.
Clean up stack.
Return to caller.

Print X New Lines

STX REPEAT
LDX REPEAT
BEQ END.CR
DEC REPEAT
JSR CR.LF
CLC

RCC CRLOOP
RTS

BYTE

Initialize repeat counter.
Exit if repeat counter has timed out.

Decrement repeat counter.
Print a carriage return and line feed.
Loop back to see if done yet.

If done, return to caller.
This byte is used as a repeat counter by
SPACES, CHARS, and CR.LFS.

Print a Message

Some calling programs might need to output messages stored at arbitrary places
in memory. So let’s develop a subroutine, called PR.MSG, to perform this function.
PR.MSG will print a message to all currently selected output devices. It must get
characters from the message in a sequential manner and pass each character to
PR.CHR, thus printing it on all currently selected output devices.

But how can PR.MSG know where the message starts and ends?

We could require that the message be placed in a known location, but then

PRINT UTILITIES 91

PR.MSG would lose usefulness as it loses generality. We could require that a pointer
in a known location be initialized so that it points to the start of the message. But
that would still tie up the fixed 2 bytes occupied by that pointer. Or we could havea
register specify the location of a pointer that actually points to the start of the
message. Presumably a calling program can find some convenient 2 bytes in the zero
page to use as a pointer, even if it must save them before it sets them. The calling
program can set this zero-page pointer so that it points to the beginning of the
message, and then set the X register so that it points to that zero-page pointer. Hav-
ing done so, the calling program may call PR.MSG. Using the indexed indirect ad-
dressing mode, PR.MSG can then get characters from the message.

When PR.MSG has printed the entire message, it will return to its caller.

How will PR.MSG know when it has reached the end of the message? We can
mark the end of each message with a special character: call it ETX, for End of TeXt.
And for reasons which will become clear in Chapter 10, A Disassembler, we'll also
start each message with another special character: TEX, for TEXt follows,

If we can develop PR.MSG to work from these inputs, then it won't be hard for
a calling program to print any particular message in memory. Let's look at the re-
quired calling sequence.

A message, starting with a TEX and ending with an ETX, begins at some ad-
dress. We'll call the high byte of that address MSG.HI and the low bye of that ad-
dress MSG.LO. Thus, if the message starts at address $13A9, MSG.HI = $13 and
MSG.LO = $A9.

MSGPTR is some zero-page pointer. It may be anywhere in the zero page. If the
calling program does not have to preserve MSGPTR, it can print the message to the
screen with the following code:

JSR TVT.ON Select TVT as an output device. (Any other currently
selected output device will echo the screen output.)

LDA #MSG.LO Set MSGPTR

STA MSGPTR so it points

LDA #MSG.HI to the start

STA MSGPTR+1 of the message.

LDX #MSGPTR Set X register so it points to MSGPTR.

JSR PR.MSG Print the message to all currently selected output
devices.

If the calling program must preserve MSGPIR, it will have to save MSGPTR
and MSGPTR +1 before executing the above lines of code and restore MSGPTR and
MSGPTR +1 after executing the above lines of code.

That looks like a reasonably convenient calling sequence. So now let’s turn our
attention to PR.MSG itself and develop it so it meets the demands of its callers.

92 BEYOND GAMES

PR.MSG

LOOP

NEXT

MSGEND

TEMP.X

Print a Message

STX TEMP.X

LDA 1,X
PHA

LDA 0,X
PHA

LDX TEMP.X

LDA (0,X)
CMP #ETX
BEQ MSGEND
INC 0,X

BNE NEXT
INC 1,X

JSR PR.CHR

CLC

BCC LOOP
PLA

STA 0,X
PLA

STA 1,X
RTS

.BYTE O

Save X register, which specifies message
pointer.
Save message pointer.

Restore original value of X, so it points
to message pointer.

Get next character from message.

Is it the end of message indicator?

If so, handle the end of the message...
If not, increment. the message pointer
s0 it points to the next

character in the message.

Send the character to all currently
selected output devices.

Get next character

from message.

Restore message pointer.

Return to caller, with MSGPTR pre-
served.

This data cell is used to preserve the ini-
tial value of X,

Print the Following Text

Even more convenient than PR.MSG would be a routine that doesn't require
the caller to set any pointer or register in order to indicate the location of a message.
But if no pointer or register indicates the start of the message, how can any
subroutine know where the message starts?

It can look on the stack.

Why not have a subroutine, called Print-the-Following, which prints the
message that follows the call to Print-the-Following. Since Print-the-Following is
longer than six characters, let's shorten its name to “PRINT:”, letting the colon in
“PRINT:" suggest the phrase “the following.” A calling program might then print
“HELLO” with the following lines of code:

PRINT UTILITIES 93

JSR TVT.ON Select TVT as an output device. (Other currently
selected output devices will echo the screen output.)

JSR PRINT:

.BYTE TEX

BYTE “HELLO”

.BYTE ETX

(6502 code follows the ETX)

Whenever the 6502 calls a subroutine, it pushes the address of the subroutine’s
caller onto the stack. This enables control to return to the caller when the subroutine
ends with an RTS, because the 6502 knows it can find its return address on the stack.
The subroutine PRINT: can take advantage of this fact by pulling its own return ad-
dress off the stack, and using it as a pointer to the message that should be printed.
When it reaches the end of the message, it can place a new return address on the
stack, an address that points to the end of the message. Then PRINT: can execute an
RTS. Control will then pass to the 6502 code immediately following the ETX at the
end of the message. The source code for PRINT: follows:

PRINT: PLA Pull return address from
TAX stack and save it in
PLA registers X and Y.
TAY
JSR PUSHSL Save the select pointer, because we're
going to use it as a text pointer.
STX SELECT Set SELECT = return address.
STY SELECT+1
JSR INC.SL Increment SELECT pointer so it points
to TEX character.
LOOP JSR INC.SL Increment select pointer so it points to
the next character in the message.
JSR GET.SL Get character.
CMP #ETX Is it end of message indicator?
BEQ ENDIT If so, adjust return address and return.
JSR PR.CHR If not, print the character to all current-
ly selected devices.
CLC Then loop to get
BCC LOOP next character...
ENDIT LDX SELECT

As mrVART NAMEQ

LDY SELECT+1

JSR POP.SL

TYA
PHA
TXA
PHA
RTS

Restore select pointer to its original
value.

Push address

of ETX

onto the stack.

Return (to byte immedieftely following
ETX).

Saving and Restoring the SELECT Pointer

Now that a number of subroutines are accessing the contents of memory with
the SELECT utilities (GET.SL, PUT.SL, INC.SL and DEC.SL) we should provide yet
another pair of SELECT utilities to enable the subroutines to save and restore the
SELECT pointer. With such save and restore functions, any subroutine can use the
SELECT pointer to access memory, without interfering with the use of the SELECT
pointer by other subroutines. PUSHSL will push the SELECT pointer onto the stack
and POP.SL will pop the SELECT pointer off the stack. PUSHSL and POP.SL will

each preserve X,Y, and the zero page.

Save Select Pointer
(Preserving X,Y, and the Zero Page)

PLA

STA RETURN
PLA

STA RETURN+1
LDA SELECT+1
PHA

LDA SELECT
PHA

LDA RETURN+1
PHA

LDA RETURN
PHA

RTS

PUSHSL

Pull return address from stack and
store it temporarily in RETURN.

Push select pointer onto stack.

Push return address back onto stack.

Return to caller. (Caller will find select

pointer on top of the stack.)

PRINT UTILITIES 95

Restore Select Pointer
(Preserving X,Y, and the Zero Page)

POP.SL PLA Save return address temporarily.
STA RETURN
PLA
STA RETURN+1
PLA Restore select pointer from stack.
STA SELECT
PLA
STA SELECT+1
LDA RETURN+1 Place return address back on stack.
PHA
LDA RETURN
PHA
RTS Return to caller.

RETURN WORD 0 This pointer is used by PUSHSL and
POP.SL to preserve their return ad-
dresses.

Conclusion

With the print utilities presented in this chapter, it should be easy to write the
character-output portions of many programs, making it possible for calling pro-
grams to select any combination of output devices and to send individual characters,
bytes, or complete messages to those devices. The calling programs will be com-
pletely insulated from the particular data representations used by the print utilities.
The calling programs do not need to know the nature or location of the output-
device flags or the addresses of the output vectors; they need only know the ad-
dresses of the print utilities.

Similarly, although the print utilities use subroutines that operate on the
SELECT pointer, the print utilities themselves never access the SELECT pointer
directly. They are completely insulated from the nature and location of the SELECT
pointer. As long as they know the addresses of the SELECT utilities, the print
utilities can get the currently selected byte, select the next or the previous byte, save
the SELECT pointer onto the stack, and restore the SELECT pointer from the stack.
If at some point we should implement a different representation of “the currently
selected byte,” we need only change the SELECT utilities; the print utilities, and all
other programs which use the SELECT utilities need never change.

Insulating blocks of code from the internal representation of data in other
blocks of code makes all the code much easier to maintain.The following print
utilities are available to external callers:

96 BEYOND GAMES

CHARS Send the character in the accumulator “X” times to all current-
ly selected output devices.

CR.LF Cause a new line on all currently selected devices.

CR.LFS Cause “X"” new lines on all currently selected devices.

PR.BYT Print the byte in the accumulator, in hexadecimal representa-
tion.

PR.CHR Print the character in the accumulator on all currently selected
devices. ,

PR.MSG Print the message pointed to by a zero-page pointer specified
by X. "

PRINT: Print the message following the call to “PRINT:".

SPACE Send a space to all currently selected output devices.

SPACES Send “X” spaces to all currently selected output devices.

Exercises

1) Write a printer test program, which sends every possible character from $00
to $FF to the printer.

2) Rewrite the printer test program so that it prints just one character per line.

PRINT UTILITIES 97

Chapter 8:
Two Hexdump Tools

The Visible Monitor allows you to examine memory, but only 1 byte at a time.
You'll quickly feel the need for a software tool that will display or print out the con-
tents of a whole block of memory. This is especially useful if you wish to debug a
program. You can't debug a program if you're not sure what's in it. A hexdump tool
will show you what you've actually entered into the computer, by displaying the
contents of memory in hexadecimal form.

I've developed two kinds of hexdump programs, each for a different type of
output device. When I'm working at the keyboard, I want a hexdump routine that
dumps from memory to the screen, a line or a group of lines at a time. But for
documentation and for program development or debugging away from the
keyboard, I want a hexdump routine that dumps to a printer,

Most of the code required to dump from memory will be the same, whether we
direct output to the screen or to the printer. However, there are enough differences
between the two output devices that it is convenient to have two hexdump pro-
grams, one for the screen and one for the printer. Let’s call them TVDUMP and
PRDUMP.

TVDUMP

TVDUMP should be very responsive: when you are using the Visible Monitor,
a single keystroke should cause one or more lines to be dumped to the screen. But
how can TVDUMP know what lines you want to dump? Since the Visible Monitor
allows you to select any address by rolling hexadecimal characters into the address
field or by stepping forward and backward through memory, we might as well have

98 BEYOND GAMES

TVDUMP dump memory beginning with the currently selected address.

Since we're basing TVDUMP on the Visible Monitor’s currently selected ad-
dress, we can use some of the Visible Monitor’s subroutines to operate on that ad-
dress. GET.SL will get the currently selected byte, and INC.SL will increment the
SELECT pointer, thereby selecting the next byte. The print utilities TVT.ON and
PR.BYT will let us select the screen as an output device and print the accumulator in
hexadecimal representation.

We ought to have TVDUMP provide a dump that will be easﬂy readable, even
on the narrow confines of a twenty-five- or forty-column display. That means we
can't display a full hexadecimal line (16 bytes) on one screen line if we want to have
a space between each byte. We can provide hexdumps that split each hexadecimal

line into two screen lines. See outputs A and B in figure 8.1.

HH HH
HH HH

HH HH
HH HH

HH
HH

HH
HH

HH
HH

HH
HH

OQutput A:
0200 HH HH HH HH HH
02008 HH HH HH HH HH
02100 HH HH HH HH HH
0218 HH HH HH HH HH
29 columns
Output B:
0200

HH HH HH HH HH HH HH HH

0208

HH HH HH HH HH HH HH HH

0210

HH HH HH HH HH HH HH HH

0218

HH HH HH HH HH HH HH HH

23 columns

Figure 8.1: Two TVDUMP formats.

TWO HEXDUMP TOCLS 99

One way to provide such a hexdump is shown by the flowchart in figure 8.2.
Using this flowchart as a guide, let's develop source code to perform the TVDUMP
function: '

START

FORCE A NEW LINE

FORCE A NEW LINE

PRINT CURRENTLY
SELECTED ADDRESS

SPACE OR FORCE
A NEW LINE
(FOR OUTPUT

A OR B}

GET CURRENTLY
SELECTED BYTE

PRINT T
SELECT NEXT BYTE
" SPACE ONCE

FORCE A NEW LINE

NO

RETURN

Figure 8.2: Flowchart of the screen Hexdump Program.

100 BEYOND GAMES

CR = $0D
LF = $0A

GET.SL
INC.SL

PR.BYT

SELECT

COUNTR
HEXLNS

TVDUMP

DUMPLN

CONSTANTS

Carriage return.

Line feed.

REQUIRED SUBROUTINES

Get currently selected byte.
Increment the pointer that specifies the currently selected

byte.

Print the accumulator to currently selected devices, in
hexadecimal representation.
Pointer to currently selected address.

VARIABLES

BYTE 0
BYTE 4

JSR TVT.ON

LDA HEXLNS
STA COUNTR
LDA SELECT
AND #$F8
STA SELECT
LDX #2

JSR CR.LFS
JSR PR.ADR
JSR CR.LF

This byte counts the number of lines
dumped by TVDUMP.

Number of hexadecimal lines to be
dumped by TVDUMP. (Set this to any
number you like. To dump a single
hexadecimal line [16 bytes] , set
HEXLNS = 1.)

TYDUMP

Select TVT as an output device.
(Other devices will echo the dump.)
Set COUNTR to the number of lines
to-be dumped by TVDUMP.

Set SELECT to beginning

of a screen line (8 bytes)

by zeroing 3 LSB in SELECT.

Skip two lines on the screen.

Print the selected address.

Advance to a new line on the screen.
(This call to CR.LF may be replaced
with a call to SPACE on systems with
screens more than 27 columns wide.
This will yield the Output A rather than

TWO HEXDUMP TOOLS 101

DMPBYT

IFDONE

JSR SPACE
JSR DUMPSL
JSRINC.SL

LDA SELECT
AND #07

BNE DMPBYT
JSR CR.LF

LDA SELECT

AND #$0F
BNE IFDONE
JSR CR.LF
DEC COUNTR
BNE DUMPLN
JSR TVTOFF
RTS

Output B.)

Print a space.

Dump currently selected byte.
Select next address by incrementing
select pointer.

Is it the beginning of a new

screen line? (3 LSB = 07)

If not, dump next byte...

If so, advance to a new line on the
screen,

Does this address mark the beginning of
a new hexadecimal line?

(4 LSB of SELECT = 07)

If so, skip a line on the screen.
Dumped last line yet?

If not, dump next line.

Deselect TVT as an output device.
Return to caller.

DUMP CURRENTLY SELECTED BYTE

This subroutine gets the currently selected byte (the byte pointed to by

SELECT) and prints it in hexadecimal format on all selected devices.

DUMPSL

JSR GET.SL Get currently selected byte.
JSR PR.BYT Print it in hexadecimal format.
RTS Return to caller,

PRINT ADDRESS

the value of the SELECT pointer).

PR.ADR

102 BEYOND GAMES

LDA SELECT+1

JSR PR.BYT
LDA SELECT
JSR PR.BYT
RTS

This subroutine prints, on all selected devices, the currently selected address (ie:

Get the high byte of SELECT...
...and print it in hexadecimal format.
Get the low byte of SELECT...

...and print it in hexadecimal format.
Then return to caller,

PRDUMP

With the subroutine presented thus far in this chapter, we can dump to the
screen just by calling TVDUMP. But what if we want to print a hexdump? Is a hex-
dump program that prints any different fromone that dumps to the screen? Can we
simply select the printer instead of the TVT and leave the rest of the code the same?

We could. But then we wouldn't be taking full advantage of the printer.
TVDUMP produces an output that is easily read within the twenty-five or forty col-
umns of a video display. Most printers can output sixty-four columns or more. We
should take advantage of the extra width offered by a printer.

We should also recognize the difference in responsiveness between a screen and
a hard-copy device. When I'm using a screen-based hexdump, I don't mind hitting a
single key every time [want some lines dumped to the screen. But with a printing
hexdump, I don’t want to strike a key repeatedly to continue the dump. I don't mind
striking a number of keys at the beginning in order to specify the memory to be
dumped, but once I've done that I don't want to be bothered again. I want to set it
and forget it,

When called, a printing hexdump program should announce itself by clearing
the screen and displaying an appropriate title (eg: “PRINTING HEXDUMP”). Then
it should ask you to specify the starting address and the ending address of the
memory to be dumped.

Once it knows what you want to dump, PRDUMP should print a hexdump of
the specified block of memory. For your convenience, PRDUMP should tell you
what block of memory it will dump; then it should provide a header for each column
of data and indicate the starting address of each line of data. (See the “D” appen-
dices.)

Using the flowchart of figure 8.3 as a guide, we can write source code for the
top level of the PRINTING HEXDUMP:

START @
OUTPUT HEADER

CLEAR SCREEN AND INE
DISPLAY TITLE

SET STARTING

DUMP_ONE
AODRESS o MEMORY HEXADECIMAL LINE

Figure 8.3; To print a Hexdump., |

SET ENDING
ADDRESS OF MEMORY
TO BE DUMPED

PRINT RANGE OF MEM-
ORY TO BE DUMPED.

®

RETURN

TWO HEXDUMP TOOLS 103

PRDUMP JSR TITLE Display the title.
JSR SETADS Let user set start address and end ad-
dress of memory to be dumped.
(SETADS returns with SELECT=EA,
the end address.)

JSR GOTOSA Set SELECT =SA, the starting address.
JSR PR.ON Select printer as a output device. (Other
selected devices will echo the dump.)
JSR HEADER Output hexdump header.
HXLOOP JSR PRLINE Dump one line. (PRLINE returns minus

if it dumped through ending address;
otherwise it returns PLUS.)

BPL HXLOOP Done yet? If not, dump next line.

JSR CR.LF If so, go to a new line,

JSR PR.OFF Deselect printer.

RTS Return to caller. Specified memory has
been dumped.

TITLE JSR CLR. TV Clear the screen.
JSR TVT.ON Select screen as an output device.
" JSR PRINT: Display “Printing Hexdump” on all

selected output devices.

.BYTE TEX Text string must start with a TEX
character...

.BYTE CR,’PRINTING "’
.BYTE 'HEXDUMP ‘,CR

.BYTE LF,LF,
BYTE ETX ...and end with an ETX character.
RTS Return to caller.

Get Starting, Ending Address

The printing hexdump program must secure from the user the starting address
and the ending address of the memory to be dumped. The subroutine, SETADS, will
perform these functions, It will place an appropriate prompt on the screen (“Set
Starting Address” or “Set Ending Address”) and then allow the user to specify an ad-
dress.

Putting a prompt on the screen is easy: just select the TVT by calling TVT.ON,
call “PRINT:” and follow this call with a TEX (start of text) character, the text of the
prompt, and then an ETX (end of text) character. How can we allow the user to
specify an address? We could make a subroutine, called GETADR, which gets an ad-
dress by enabling the user to set some pointer. That sounds mighty familiar — that’s
what the Visible Monitor does. Conveniently, the Visible Monitor is a subroutine,
which returns to its caller when the user presses Q for Quit. Therefore, after putting

104 BEYOND GAMES

the appropriate prompt on the screen, SETADS will call the Visible Monitor. When
the Visible Monitor returns, the SELECT pointer will specify the requested address.

SETADS

SET.EA

EAHERE

SAHERE

JSR TVT.ON

JSR PRINT:
.BYTE TEX
.BYTE CR,LF,LF
.BYTE

BYTE

.BYTE ETX

JSR VISMON

JSR SAHERE

JSR PRINT:
.BYTE TEX
.BYTE CR,LF,LF
.BYTE

.BYTE

.BYTE ETX

JSR VISMON

SEC

LDA SELECT+1
CMP SA+1
BCC TOOLOW
BNE EAHERE

LDA SELECT
CMP SA

BCC TOOLOW
LDA SELECT +1
STAEA+1
LDA SELECT
STAEA

RTS

LDA SELECT+1
STA SA+1

SET STARTING ADDRESS, ENDING ADDRESS

Select TVT as an output device. All
other selected output devices will echo
the screen output.

. Put prompt on the screen:

‘SET STARTING ADDRESS ’
‘AND PRESS Q"

Call the Visible Monitor, so user can
specify a given address.

Set starting address equal to address set
by the user.

Put prompt on the screen:

‘SET ENDING ADDRESS ’
‘AND PRESS “Q".

Call the Visible Monitor, so user can
specify a given address.

If user tried to set an

ending address less than

the starting address,

make user do it over.

If SELECT is greater than SA, set
EA=SELECT. That will make EA
greater than SA.

Set EA=SELECT...

... and return.

Set SA=SELECT...

TWO HEXDUMP TOOLS 105

LDA SELECT

STA SA
RTS ...and return.
TOOLOW JSR PRINT: Since user set ending address
.BYTE STX, too low, print error message:
.BYTE CR,LF,LR
.BYTE ‘ERROR! ’
.BYTE ‘END ADDRESS LESS ’
.BYTE ‘THAN START ADDRESS, '
.BYTE ‘WHICH IS '
.BYTE ETX
JSR PR.SA Print starting address. ...and let the user
set
JMP SET.EA the ending address again.
SA WORD 0 Pointer to starting address of memory to
be dumped.
EA .WORD $FFFF Pointer to ending address of memory to
be dumped.

Now that the user can set the starting address and the ending address for a hex-
dump (or for any other program that must operate on a contiguous block of
memory), we should have utilities that print out the starting address, the ending ad-
dress, or the range of addresses selected by the user. If the user set $D000 as the start-
ing address and $D333 as the ending address, we should be able to call one
subroutine that prints “$D000,” another that prints “$D333,” and a third that prints
“$D000 — $D333.”

Let's call these subroutines PR.SA, to print the starting address; PR.EA, to print
the ending address; and RANGE, to print the range of addresses.

Print Starting Address

The following subroutine prints the value of SA, the starting address, in hexa-
decimal format:

.PR.SA LDA #$ Print a dollar sign to
JSR PR.CHR indicate hexadecimal.
LDA SA+1 Print high byte of starting address.
JSR PR.BYT
LDA SA Print low byte of starting address.
JSR PR.BYT
RTS Return to caller.

106 BEYOND GAMES

Print Ending Address

The following subroutine prints the value of EA, the ending address, in hexa-
decimal format:

PR.EA LDA #$ Print a dollar sign to ~
JSR PR.CHR .. indicate hexadecimal.
LDA EA+1 Print high byte of ending address.
JSR PR.BYT
LDA EA Print low byte of ending address.
JSR PR.BYT
RTS Return to caller.

Print Range of Addresses

RANGE JSR PR.SA Print starting address.
LDA #— Print a hyphen.
JSR PR.CHR
JSR PR.EA Print ending address.
RTS Return to caller.
HEADER

We want a routine to print an appropriate header for the hexdump. It should
accomplish two tasks: identify the block it will dump, and print a hexadecimal digit
at the top of every column of hexdump output. Thus, HEADER should produce the
output shown between the following lines:

DUMPING HHHH-HHHH
01234567 89 ABCDETF

Notice the blank line following the line of hexadecimal characters. This will in-
sure a blank line between the header and the dump itself, making for a more

TWO HEXDUMP TOOLS 107

readable output. (See the hexdumps in the D series of appendices which were pro-
duced with PRDUMP.)

JSR PRINT:

.BYTE TEX,CR,LF
.BYTE 'DUMPING '

BYTE ETX
JSR RANGE
JSR CR.LF

Here are a few lines of code to print the first line of the header:

What about the rest of the header? Since all we want to do is print the hexa-

decimal digits 0 thru $F, with appropriate spacing between them, the rest of
HEADER can just be some code to count from 0 to $F, convert to ASCII, and print:

HXLOOP

COLUMN

PRINT HEXADECIMAL DIGITS (Version 1)

LDX #7

JSR SPACES
LDA #0

STA COLUMN
LDA COLUMN
JSR ASCII

JSR PR.CHR
LDX #2

JSR SPACES
INC COLUMN
LDA COLUMN
AND #$F0
BEQ HXLOOP
LDX #2

JSR CR.LFS
RTS

BYTEO

Print seven spaces.

Initialize column counter

to zero.

Convert column counter to

an ASCII character and

print it.

Space twice after the character.

Increment the column counter.
Loop if counter not greater
than $OF.

Otherwise, skip two lines

after the header.

Then return.

This 1-byte variable is used to count
from 00 to $OF.

Version 1 of PRINT HEXADECIMAL DIGITS will work, and in only 49 bytes.

But that's 49 bytes of code, which among other things must count and branch, and if
for some reason one of those bytes is wrong, Version 1 of PRINT HEXADECIMAL
DIGITS will probably go directly into outer space. But we could write PRINT

108 BEYOND GAMES

HEXADECIMAL DIGITS in a much more straightforward manner, which, though
somewhat more costly in terms of memory required, will be more readable and less

likely to run amuck.
PRINT HEXADECIMAL DIGITS need only call “PRINT:", and follow this call
with a text string consisting of the desired hexadecimal digits.

PRINT HEXADECIMAL DIGITS (Version 2)

JSR PRINT:

.BYTE TEX

.BYTE ’ 0 1
.BYTE 8 9
.BYTE CR,LF,LF

.BYTE ETX

RTS

>N
o b
O
g w
m o
)

Version 2 of PRINT HEXADECIMAL DIGITS requires 60 bytes. But it’s more
readable than Version 1 of PRINT HEXADECIMAL DIGITS, and it can be modified
much more easily: just change the text in the message it prints. You don't have to
calculate branch addresses or test the terminal condition in a loop. This is just one
example of a programming problem that may be solved in a computation-intensive
or a data-intensive manner.

Where other factors are about equal, I prefer data-intensive subroutines,
because they're more readable and easier to change. Even in this case, I'm willing to
pay the extra 20 bytes for a version of PRINT HEXADECIMAL DIGITS that I don't
have to read twice. Hence, PRINT HEXADECIMAL DIGITS Version 2, and not
Version 1, will appear in the assembler listings of HEADER in Appendix C5.

PRLINE

Clearly, most of the work of PRDUMP will be performed by the subroutine
PRLINE, which dumps one line of memory to the printer. It will stop when it has
dumped 16 bytes (one hexadecimal line) or has dumped through the ending address
specified by the user.

As we did for TVDUMP, let’s use SELECT as a pointer to the first byte that
must be dumped by PRLINE. When PRLINE is called, it must see if the currently
selected byte (the byte pointed to by SELECT) is at the start of a hexadecimal line. A
byte is at the beginning of a hexadecimal line if the 4 LSB (least-significant bits) of its
address are zero. Thus, $4ED8 is not the start of a hexadecimal line, but $4EDO is.

If the currently selected byte is not the beginning of a hexadecimal line, PRLINE
should space over to the appropriate column for that byte. If the currently selected

TWO HEXDUMP TOOLS 109

byte is at the beginning of a hexadecimal line, PRLINE should print the address of
the currently selected byte and space twice.

Once it has spaced over to the proper column, PRLINE need only get the cur-
rently selected byte, print it in hexadecimal format, space once, and then do the
same for the next byte, until it has dumped the entire line or has dumped the last
byte requested by the user.

Figure 8.4 gives a flowchart for the following routine:

START

ADVANCE PRINTHEAD
TO A NEW LINE

PRINT SELECTED
ADDRESS

SPACE TWICE

|

SPACE OVER TO COLUMN
FOR FIRST BYTE TO
BE DUMPED

Figure 8.4: Dump one line to the printer.

DUMP SELECTED BYTE

SELECT NEXT BYTE

DUMPED

LAST BYTE YET?

(SELECT = EAR)
-3

YES

RETURN
MINUS

(ENTIRE BLOCK
DUMPED.)

FINISHED
LINE?

(4 LSB_OF
SELECT = 07}
P

RETURN
PLUS

NO

(LINE DUMPED;

BLOCK NOT
SPACE FINISHED YET)

YES

110 BEYOND GAMES

PRLINE

LOOP

COL.OK

NOT.EA

EXIT

Select Next Byte

JSR CR.LF
LDA SELECT
PHA

AND #$0F
STA COLUMN

PLA

AND #8F0
STA SELECT
JSR PR.ADR
LDX #3

JSR SPACES
LDA COLUMN
BEQ COL.OK
LDX #3

JSR SPACES
JSR INC.SL
DEC COLUMN
BNE LOOP
JSR DUMPSL
JSR SPACE
JSR NEXTSL

BMI EXIT
LDA SELECT
AND #$0F
CMP #0

BNE COL.OK
RTS

PRLINE

Advance printhead to a new line.
Determine starting

column

for this dump. V

Now COLUMN holds the number of the

-.column in which we will dump the first

byte.
Set SELECT pointer to
beginning of a hexadecimal line,

Print the selected address.

Space three times — to the

first column.

Do we dump from the first column?

If so, we're at the correct column now.
If not, space three

times for each byte not

dumped.

Dump the currently selected byte.
Space once.

Select the next byte in memory, tinless
we've already dumped through the end
address.

(MINUS means we've dumped through
the end address.)

Dumped entire line?

(4 LSB of SELECT = 07)

If so, we've dumped the entire line. If
not,

select the next byte and dump it...
PRLINE returns MINUS, with A=$FF,
if it dumped through ending address.
Otherwise it returns PLUS, with A=0.

NEXTSL tests to see if SELECT is less than the ending address. If so, it in-
crements SELECT and returns PLUS {(with zero in the accumulator). If not, it

TWO HEXDUMP TOOLS 111

preserves SELECT and returns MINUS (with $FF in the accumulator).

NEXTSL SEC

NEXTSL

Prepare to compare.

LDA SELECT+1 Is high byte of SELECT less than
CMP EA+1 high byte of end address (EA)?
BCC SL.OK If so, SELECT is less than EA, so it may
be incremented.
BNE NO.INC If SELECT is greater than EA, don't
increment SELECT.
SELECT is in the same page as EA,
SEC prepare to compare low bytes:
LDA SELECT Is low byte of SELECT less than
CMP EA low byte of EA?
BCS NO.INC If not, don’t increment it.

SL.OK JSR INC.SL

Since SELECT is less than EA, we may

increment it,

LDA #0 Set “incremented” return code and
RTS return.

NO.INC LDA #$FF Set “not incremented” return code
RTS and return.

Go to Start of Block
GOTOSA sets SELECT = SA, thus selecting the first byte in the block defined

by SA and EA:
GOTOSA LDASA Set SELECT
STA SELECT equal to
LDA SA+1 START ADDRESS
STA SELECT+1 of block.
RTS

Now the two hexdump tools are complete. You may invoke either tool directly
from the Visible Monitor by displaying the start address of the given hexdump tool
and pressing “G.” This will work fine for PRDUMP: you'll get a chance to set the
starting address and the ending address that you want to dump, and then you'll see
the dump on both the printer and the screen. If you start TVDUMP with a “G” from
the Visible Monitor, you'll only get a dump of TVDUMP itself. You won't be able to
use TVDUMP to dump any other location in memory. Why? Because TVDUMP
dumps from the displayed address, and to start any program with a “G” from the
Visible Monitor, you must first display the starting address of that program. Prob-

112 BEYOND GAMES

ably you'd like to be able to use TVDUMP to dump other areas in memory. To do
o0, you must assign a Visible Monitor key (eg: “H”) to the subroutine TVDUMP, so
that the Visible Monitor will call TVDUMP whenever you press that key. See
Chapter 12, Extending the Visible Monitor.

TWO HEXDUMP TOOLS 113

Chapter 9:
A Table-Driven Disassembler

With the Visible Monitor you can enter object code into your computer. With
hexdump tools you can dump that object code to the screen or to a printer.
However, you still can't be sure you've entered the instructions you intended to
enter unless you refer back and forth from your hexdump to Appendix A4, The 6502
Opcode List. You must verify that every opcode you entered is for the instruction
and the addressing mode that you had intended. You must count forward or
backward in hexadecimal to make sure that the operands in your branch instruc-
tions are correct. If you entered one opcode or operand incorrectly, then even
though your handwritten program may be correct, the version in your computer’s
memory will be wrong.

A disassembler (the opposite of an assembler) can make your life a lot easier by
displaying or printing the mnemonics represented by the opcodes you entered into
your computer, and by showing you the actual addresses and addressing modes
represented by your operands. The disassembler can't know that address 0000 has
the label “TV.PTR,” but it can let you know that a given instruction operates on ad-
dress 0000.

A disassembled line includes the following fields:

Field Field

Number Description

1. Mnemonic,

2. Operand.

3. Address of opcode.

4, Opcode in hexadecimal.

114 BEYOND GAMES

5. First byte of operand (if present) in hexadecimal.
6. Second byte of operand (if present) in hexadecimal.
Here's a disassembled line, with each of the fields numbered:
1 2 3 4 5 6 (Field Numbers)
JSR 0400 08AC 20 00 04 (Disassembled Line)

As with hexdump tools, I find it convenient to have two disassemblers: one for
the screen and one for the printer. The screen-oriented disassembler should direct a
certain number of disassembled lines to the screen whenever it is called. On the other
hand, the printing disassembler should get a starting address and an ending address
from the user and print a continuous disassembly of that portion of memory. As
before, when I direct output to a printer I want to set it and forget it.

Whether we disassemble to the screen or to a printer, we will disassemble one
line at a time. How can a program disassémble a line? The same way a person does.
You look at an opcode in memory and then consult a table such as Appendix A4 to
determine the operation represented by that opcode. Each operation has two at-
tributes, a mnemonic and an addressing mode. The procedure is simple. Write the
mnemonic; then, from the addressing mode determine whether this opcode takes no
operand, a 1-byte operand, or a 2-byte operand. If it takes an operand, look at the
next byte or two in memory and then write the operand for the mnemonic.

Thus, if you wish to disassemble object code from some place in memory, and
you find an $8D at that location, you can determine from Appendix Aé that $8D
represents “store accumulator, absolute mode.” Therefore, you'll write: “STA,”
which is the mnemonic for store the accumulator.

The absolute mode requires a 2-byte operand, so you'll look at the 2 bytes
following the $8D. If $36 follows the $8D and is itself followed by $DO, then the
disassembled line will look like this:

STA $D036
That's a lot easier to read than the original 3 bytes of object code:

8D 36 DO

A TABLE-DRIVEN DISASSEMBLER 115

DISASSEMBLY

JSR 0400 1E00- 20 00 04

JSR 04A0 1E03 20 A0 04

LDA (0021),Y 1E06 Bl 21

CLC 1E08 18

BCC 1E00 1E09 90 F5
HEXDUMP

01 2 3 4 5 6 7 8 9 AB CDEF

1E00 20 00 04 20 A0 04 Bl 21 18 90 Fs

Figure 9.1: Disassembly and hexdump of the same object code.

TO DISASSEMBLE ONE LINE:

GET OPCODE

WRITE DOWN
ITS MNEMONIC

LOOK UP ITS
ADDRESSING MODE

WRITE DOWN
ITS OPERAND

FINISH THE LINE

BY WRITING, IN HEX,
THE BYTE(S)]
WE JUST OISASSEMBLED

RETURN

Figure 9.2: Algorithm for disassembling one line of code.

116 BEYOND GAMES

That looks pretty simple. We can use the SELECT pointer to indicate the cur-
rent byte within memory, and we'll assume that lower-level subroutines exist or will
exist to do the jobs required by DSLINE, which disassembles one line. With those
assumptions, we can write source code for DSLINE:

DISASSEMBLE ONE LINE

DSLINE JSRGET.SL ~ Get currently selected byte.

PHA © Save it on stack.

JSR MNEMON Print the mnemonic represented by that
opcode.

JSR SPACE Space once.

PLA Restore opcode to accumulator.

JSR OPERND Print the operand required by that op-
code.

JSR FINISH Finish the line by printing fields 3 thru
6.

JSR NEXTSL Select next byte.

RTS Return to caller, with SELECT pointing

at the last byte of the operand (or at the
opcode, if it was a 1-byte instruction).

Print Mnemonic

We need a subroutine called MNEMON which prints the three-letter mnemonic
for a given opcode. How can MNEMON do this? How do we do it? We look it up in
a table such as Appendix A4. We could have a similar table in memory and then
have MNEMON sequentially look up from the table the three characters comprising
the desired mnemonic. That would require a 3-byte mnemonic for each of 256 possi-
ble opcodes: a 758-byte table. That's a lot of memory! Perhaps if we organize our
data better we'll need less memory.

For example, why include the same mnemonic more than once in the table?
Eight different opcodes use the mnemonic LDA; why should I use up 24 bytes to
store “LDA” eight times? We could have a table of mnemonic names, which is
nothing more than an alphabetical list of the three-letter mnemonics. There are only
fifty-six different mnemonics; if we add one pseudo-mnemonic, “BAD," to mean
that a given opcode is not valid, then we still have only fifty-seven mnemonics. The
table of mnemonic names will therefore require only 171 bytes.

If you have a given opcode, how can you know which mnemonic in the table of
mnemonic names corresponds to your opcode? A mnemonic code is some number
that uniquely identifies a given mnemonic. Let’s assume that we have a table of
mnemonic codes which gives the mnemonic code for each possible opcode.

A TABLE-DRIVEN DISASSEMBLER 117

Now you can look up in the table of mnemonic codes the mnemonic code cor-
responding to a given opcode, and then use the mnemonic code as an index to the
table of mnemonic names. The three sequential characters located in the table of
mnemonic names will comprise the mnemonic for your original opcode.

This method requires not one but two tables. The two together, however, re-
quire considerably less memory than our first table did. The table of mnemonic
codes will be 256-bytes long, since it must have an entry for every possible opcode,
including invalid ones. The table of mnemonic names, on the other hand, will be
only 171-bytes long, so the two tables together require only 427 bytes. That's 331
bytes or 43 percent less memory than our first table required.

Space saved in tables may not be worth it if large or complicated code is re-
quired as an index to those tables, but in this case the code is quite simple:

MNEMON LDX #3 There are three letters in a mnemonic.
STX LETTER We'll keep track of the letters by count-
ing down to zero.
TAX Prepare to use the opcode as an index.

LDA MCODES,X Look up the mnemonic code for that op-
code. (MCODES is the table of

mnemonic codes.)

TAX Prepare to use that mnemonic code as
an index.
MNLOOP LDA MNAMES,X Get a mnemonic character. (MNAMES
is the list of mnemonic names.)
STX TEMP.X Save X register (since printing will
almost certainly change the X register).
JSR PR.CHR Print the character to all currently
selected devices.
LDX TEMP.X Restore X register to its previous value.
INX Adjust index for next letter.
DEC LETTER If three letters not yet printed,
BNE MNLOOP loop back to handle the next one.
RTS Otherwise, return to caller.
TEMP.X .BYTE O
LETTER .BYTEO

As you can see, MNEMON requires only 30 bytes of code in machine language:
2 bytes to hold variables and 427 bytes for the two tables (MNAMES and
MCODES). The entire subroutine requires 459 bytes, but since most of those bytes
are data in tables, comparatively little can go wrong with the program. If the wrong
bytes are keyed into the table of mnemonic names, then the disassembler will print
one or more incorrect characters in a mnemonic. But MNEMON won't crash! Bad

118 BEYOND GAMES

data in means bad data out, but at least MNEMON will run, and a running program
is a lot easier to correct than one that crashes and burns.

So again we have a data-intensive, rather than a computation-intensive,
subroutine. The tables required by MNEMON are included in Appendix C8.

Print Operand

Now we come to the tricky part: printing the right operand given an opcode at
some location in memory. When I disassemble object code by hand, I write the
operand in two steps: first [determine the addressing mode of the given opcode, and
then, if that addressing mode takes an operand, I write down the proper operand in
the proper form. Proper form means including a comma and an X or a Y for every
indexed instruction, including parentheses in the proper places for indirect instruc-
tions, and printing out all addresses high byte first, since that makes it easier to read
an address.

OPERND (the subroutine that prints an operand for a given opcode in a given
location in memory) will therefore determine the addressing mode for a given op-
code, and then call an appropriate subroutine to handle that addressing mode:

OPERND
OPERND TAX Look up addressing mode code for
LDA MODES, X this opcode. ‘
TAX X now indicates the addressing mode.
JSR MODE.X Call the subroutine that handles address-
ing mode “X."”
RTS Return to caller.

MODES is a table giving the addressing mode for each opcode.

Note that OPERND can work only if we have a routine called MODE.X which
somehow transfers control to the subroutine that handles addressing mode "“X.”
How can MODE.X do this? One way is to have a table of pointers, in which the Xth
pointer points to the subroutine that handles addressing mode “X.” MODE.X must
then transfer control to the Xth subroutine in this table. It would be nice if the 6502
offered an indexed JSR instruction, which would call the subroutine whose address
is the Xth entry in the table. Unfortunately, the 6502 doesn't offer an indexed JSR in-
struction, so we'll have to simulate one in software.

Fortunately, the 6502 does offer an indirect JMP. If a pointer, called SUBPTR,
can be made to point to a given subroutine, then the instruction JMP (SUBPTR) will
transfer control to that subroutine. Therefore, MODE.X need only set SUBPTR
equal to the Xth pointer in a table of subroutine pointers, and with the instruction

A TABLE-DRIVEN DISASSEMBLER 119

JMP (SUBPTR), it can transfer control to the Xth subroutine in the table.

HANDLE ADDRESSING MODE “X”

MODE.X LDA SUBS,X
STA SUBPTR
INX
LDA SUBS,X

STA SUBPTR+1
JMP (SUBPTR)

SUBS

Disassembler Utilities

Get low byte of Xth pointer in the table
of subroutine pointers.

Set low byte of subroutine pointer.
Adjust index to get next byte.

Get high byte of Xth pointer in the table
of subroutine pointers.

Set high byte of subroutine pointer.
Jump to the subroutine specified by the
subroutine pointer, That subroutine will
then return to the caller of MODE.X,
not to MODE.X itself.

This is a table of pointers, in which the
Xth pointer points to the subroutine tha
handles addressing mode X.

Given MODE.X, OPERND can call the right subroutine to handle any give
addressing mode. Now all we need are thirteen different subroutines, one for each ¢

the 6502's different addressing modes.

Before writing those subroutines, however, let’s think for a moment about whe
they must do, and see if we can't write a few utility subroutines to perform thos
functions. With a proper set of utilities, the addressing mode subroutines themselv
need only call the right utilities in the right order.

The following set of utilities seems reasonable:

® ONEBYT: Print a 1-byte operand.

® TWOBYT: Print a 2-byte operand.

® RPAREN: Print a right parenthesis.

@ LPAREN: Print a left parenthesis.

® XINDEX: Print a comma and then the letter “X.”
® YINDEX: Print a comma and then the letter “Y.”

120 BEYOND GAMES

Print a 1-Byte Operand: ONEBYT

ONEBYT JSR INC.SL Advance to byte following opcode.
JSR DUMPSL Print it in hexadecimal.
RTS Return to caller.

Print a 2-Byte Operand: TWOBYT

A 2-byte operand always specifies an address with the low byte first. To print a
2-byte operand high byte first, we must first print the second byte in the operand
and then print the first byte in the operand; each, of course, in hexadecimal format.

TWOBYT JSR INC.SL Advance to first byte of operand.
LDA GET.SL Load that byte into accumulator.
PHA Save it,
JSR INC.SL Advance to second byte of operand.
JSR DUMPSL Print it in hexadecimal format.
PLA Restore the operand’s first byte to the
JSR PR.BYT accumulator, and print it in hexa-

decimal.

RTS Return to caller.

ONEBYT and TWOBYT each leave SELECT pointing at the last byte of the
operand.

Print Right, Left Parenthesis: RPAREN, LPAREN

RPAREN prints a right parenthesis to all currently selected devices. LPAREN
prints a left parenthesis to all currently selected devices.

RPAREN LDA #) Load accumulator with ASCII code for
right parenthesis.
BNE SENDIT Send it to all currently selected devices.
LPAREN LDA #(Load accumulator with ASCII code for
left parenthesis.
SENDIT JSR PR.CHR Send it to all currently selected devices.
RTS Return to caller,

A TABLE-DRIVEN DISASSEMBLER 121

Index with Register X: XINDEX

XINDEX prints a comma and then the letter “X:”

XINDEX LDA #, Load accumulator with ASCII code for a
comma; then print it to
JSR PR.CHR all currently selected devices.
LDA #X Load accumulator with ASCII code for
the letter “X;" then print it
JSR PR.CHR to all currently selected devices.
RTS Return to caller.

Index with Register Y: YINDEX

YINDEX prints a comma and then the letter “Y:"

YINDEX LDA #, Load accumulator with ASCII code for a
comma; then print it to all
JSR PR.CHR currently selected devices.
LDA #Y Load accumulator with ASCII code for
the letter “Y;” then print it
JSR PR.CHR to all currently selected devices.
RTS Return to caller.

So much for the disassembler utilities, Now with a single subroutine call we can
print a 1-byte or a 2-byte operand (and, of course, we can print a no-byte operand),
and we can print any of the frequently used characters and character combinations.
Okay, let’s write some addressing mode subroutines:

Addressing Mode Subroutines

Because the 6502 has thirteen different addressing modes, we’ll need thirteen
different addressing mode subroutines:

Subroutine Addressing Mode

ABSLUT Absolute

122 BEYOND GAMES

ABS.X Absolute, X

ABS.Y Absolute, Y
ACC Accumulator
IMPLID Implied
IMMEDT Immediate
INDRCT Indirect
IND.X Indirect,X
IND.Y Indirect,Y
RELATV Relative
ZEROPG ~ Zero Page
ZERO.X Zero Page, X
ZERO.Y Zero Page,Y

The main job for each subroutine will be to print the operand in the proper
form. Although a given addressing mode will always have the same number of
characters in its operand, unfortunately, different addressing modes may have
operands of different lengths. For example, implied addressing mode has no
characters in its operand, whereas indirect indexed addressing requires eight
characters in its operand, if leading zeros are included.

But no matter how many characters appear in an operand, we want to make
sure that field 3 (the address field) always begins at the same column. Therefore,
every addressing-mode subroutine will return with A holding the number of
characters in the operand, with X holding the number of bytes in the operand, and
with SELECT pointing at the last byte in the operand (or at the opcode, if it was a
1-byte instruction). Then FINISH can print an appropriate number of spaces before
printing fields 3 thru 6.

Absolute Mode: ABvSLUT

To print the operand for an instruction in the absolute mode, we need only
print a 2-byte operand. Thus, 8D B2 04 will disassemble as:

STA 04B2 8D B2 04

ABSLUT JSR TWOBYT
LDX #2 X holds number of bytes in operand.
LDA #4 A holds number of characters in
operand.
RTS

A TABLE-DRIVEN DISASSEMBLER 123

Absolute, X Mode: ABS.X

To print the operand for an instruction in the absolute, X mode, we must print a
2-byte operand, a comma, and then an “X:"”

ABS.X JSR ABSLUT
JSR XINDEX

LDX #2
LDA #6

RTS

Abolute, Y Mode: ABS.Y

LDA D09A, X BD 9A DO

Print the 2-byte operand.

Print the comma and the “X.”

X holds number of bytes in operand.
A holds number of characters in
operand.

Return to caller.

To print the operand for an instruction in the absolute, Y mode, we must print a
2-byte operand, a comma, and then a “Y:"”

ABS.Y JSR ABSLUT
JSR YINDEX

LDX #2
LDA #6

RTS

Accumulator Mode: ACC

ORA 02FE,Y 19 FE 02

Print the 2-byte operand.

Print the comma and the "Y.”

X holds number of bytes in operand.
A holds number of characters in
operand.

Return to caller.

To print the operand for an instruction in the accumulator mode, we need only

print the letter “A:”

124 BEYOND GAMES

ROR A 6A

ACC LDA #A Load accumulator with ASCII code for
the letter A.

JSR PR.CHR Print it on all currently selected devices.
LDX #0 X holds number of bytes in operand.
LDA #1 A holds number of characters in
operand.
RTS Return to caller.
Implied Mode: IMPLID

Implied mode has no operand, so just return:

CLC 18
IMPLID LDX #0 X holds number of bytes in operand.
LDA #0 A holds number of characters in
operand.

RTS

Immediate Mode: IMMEDT

Immediate mode requires a 1-byte operand, which we'll print in hexadecimal
format. Thus, it should disassemble the two consecutive bytes “A9 41" as follows:

LDA #$41 A9 41

IMMEDT LDA ## Print a ‘¥’ sign.

JSR PR.CHR

LDA #$% Print a dollar sign.

JSR PR.CHR

JSR ONEBYT Print 1-byte operand in hexadecimal for-
mat.

LDX #1 X holds number of bytes in operand.

LDA #4 A holds number of characters in
operand.

RTS Return to caller.

A TABLE-DRIVEN DISASSEMBLER 125

Indirect Mode: INDRCT

To print the operand for an instruction in the indirect mode, we need only print
an absolute operand within parentheses. Thus, the three consecutive bytes
“6C 00 04" will disassemble as:

INDRCT

JMP (0400) 6C 00 04

JSR LPAREN
JSR ABSLUT
JSR RPAREN
LDX #2
LDA #6

RTS

Indirect, X Mode: IND.X

Print left parenthesis.

Print the 2-byte operand.

Print the right parenthesis.

X holds number of bytes in operand.
A holds number of characters in
operand.

Return to caller.

To print the operand for an instruction in the indirect, X addressing mode, we
need to print a left parenthesis, a zero-page address, a comma, the letter “X,” and
then a right parenthesis. Thus, the two consecutive bytes “A1 3C" will disassemble

as:

IND.X

126 BEYOND GAMES

LDA (3C,X) A13C

JSR LPAREN
JSR ZERO.X

JSR RPAREN
LDX #1
LDA #8

RTS

Print a left parenthesis.

Print a zero-page address, a comma, and
the letter “X.”

Print a right parenthesis.

X holds number of bytes in operand.

A holds number of characters in
operand,

Return to caller.

Indirect, Y Mode: IND.Y

To print the operand for an instruction in the indirect, Y mode, we must printa
left parenthesis, a zero-page address, a right parenthesis, a comma, and then the let-
ter “Y.” Thus, the two consecutive bytes “B1 AF” will disassemble as:

LDA (AF),Y B1 AF

IND.Y JSR LPAREN Print a left parenthesis.

JSR ZEROPG Print a zero-page address,

JSR RPAREN Print a right parenthesis.

JSR YINDEX Print a comma and then the letter “Y.”

LDX #1 X holds number of bytes in operand.

LDA #8 A holds number of characters in
operand.

RTS Return to caller,

Relative Mode: RELATV

Relative mode can be tricky. A relative branch instruction specifies a forward
branch if its operand is plus (in the range of 00 to $7F), but it specifies a backward
branch if its operand is minus (in the range of $80 to $FF). Therefore, in order to
determine the address specified by a relative branch instruction, we must first deter-
mine whether the operand is plus or minus, so we can determine whether we're
branching forward or backward. Then we must add or subtract the least-significant
7 bits of the operand to or from the address immediately following the operand of
the branch instruction; the result of that calculation will be the actual address
specified by the branch instruction,

RELATV JSR INC.SL Select next byte in memory.
JSR PUSHSL Save SELECT pointer on stack,
JSR GET.SL, Get operand byte,
PHA Save it on the stack.
JSR INC.SL Increment SELECT pointer so it points

to the opcode following the relative
branch instruction. (Relative branches
are relative to the next opcode.)
PLA Restore operand byte to accumulator,
CMP #0 Is it plus or minus?

A TABLE-DRIVEN DISASSEMBLER 127

FORWRD

RELEND

BPL FORWRD

DEC SELECT +1

CLC

ADC SELECT
BCC RELEND
INC SELECT+1
STA SELECT

JSR PR.ADR
JSR POP.SL
LDX #1
LDA #4

RTS

Zero-Page Mode: ZEROPG

If plus, it means a forward branch.
Since operand byte is minus, we'll be
branching backward.

Branching backward is like branching
forward from a location 256 bytes lower
in memory.

Add operand byte to the address

of the opcode following the

branch instruction.

Now SELECT points to the address
specified by the operand of the relative
branch instruction. Let's print it.

Restore SELECT pointer.

X holds number of bytes in operand.

A holds number of characters in
operand.

Return to caller, with SELECT pointer
once again pointing to the operand byte
of the relative branch instruction,

To print the operand of an instruction that uses the zero-page addressing mode,

we could simply print a 1-byte operand. But I find listings more readable when all
zero-page addresses are shown with the leading zeros (eg: “O0FE" rather than “FE”
to represent address $0OFE). Therefore, let’s print all zero-page operands with a
leading zero. That simply requires us to print two ASCII zeros and then to print the
1-byte operand. This will cause the bytes “85 2A” to be disassembled as:

ZEROPG

128 BEYOND GAMES

STA 002A 852A

LDA #0
JSR PR.BYT
JSR ONEBYT
LDX #1

LDA #4

RTS

Print two ASCII zeroes to all
currently selected devices.

Print the 1-byte operand.

X holds number of bytes in operand.
A holds number of characters in
operand.

Return to caller,

Zero-Page Indexed Modes: ZERO.X, ZERO.Y

“To print the operand of an instruction that uses the zero-page X or zero-page Y
addressing mode, we need only print the zero-page address, a comma, and then an
“X" or a”Y.” Thus, “B5 6C" will disassemble as:

LDA 006C,X B56C
and “B6 53" will disassemble as:

LDX 0053,Y Bé6 53

ZERO.X JSR ZEROPG Print the zero-page address.
JSR XINDEX Print a comma and the letter “X.”
LDX #1 X holds number of bytes in operand.
LDA #6 A holds number of characters in
operand.
RTS Return to caller.
ZERO.Y JSR ZEROPG Print the zero-page address.
JSR YINDEX Print a comma and the letter “Y.”
LDX #1 X holds number of bytes in operand.
LDA #6 A holds number of characters in
operand.
RTS Return to caller.

A Pseudo-Addressing Mode for Embedded Text

Now we have subroutines to disassemble machine code in any of the 6502’
thirteen legal addressing modes. But what about text embedded in a machine-
language program? We know that our programs already include text strings, where
each text string begins with a TEX character ($7F) and ends with an ETX ($FF). The
disassembler, however, doesn’t know anything about embedded text. If we try to
disassemble a machine-language program that includes embedded text, the
disassembler will assume that the TEX character, and the text string itself, are 6502
opcodes and operands; because it doesn’t know about text, it will misinterpret the
text string.

Wouldn't it be nice if the disassembler could recognize the TEX character for
what it is, and then print out the text string as text, rather than as opcodes and
operands? When it has finished printing a text string, the disassembler could then

A TABLE-DRIVEN DISASSEMBLER 129

resume treating the bytes following the ETX as conventional 6502 opcodes and

operands.

Such behavior is not hard to implement. We need only define a pseudo-
addressing mode, called TEXT mode, and say that the TEX character is the only op-
code that has the TEXT addressing mode. Then we'll write a special addressing mode
subroutine, called TXMODE, to print operands that are in the TEXT mode.
TXMODE will print an operand in the TEXT mode by printing the text that follows
the TEX character and ends with the first ETX character.

Here's some source code to implement such behavior:

TXMODE PLA
PLA
PLA
PLA
TXLOOP JSR NEXTSL
BMI TXEXIT
JSR GET.SL
CMP #ETX
BEQ TXEXIT

JSR PR.CHR

CLC

BCC TXLOOP
TXEXIT JSR CR.LF

JSR NEXTSL

RTS

Pop return address

to OPERND.

Pop return address

to DSLINE.

Advance past TEX pseudo-opcode.
Return if reached EA.

Get the character,

Is it the end of the text string?

If so, we've finished disassembling this
line,

If not, print the character.

Branch back to get

the next character.

Advance to a new line.

Advance to next opcode (if SELECT is
less than EA).

Return to the caller of DSLINE, with
SELECT at the first opcode following
the text string.

Now that we have the desired addressing mode subroutines, we can make up
the table of addressing mode subroutines:

SUBS .WORD ABSLUT
.WORD ABS.X
.WORD ABS.Y
WORD ACC
.WORD IMPLID
.WORD IMMEDT
.WORD INDRCT

130 BEYOND GAMES

.WORD IND.X
WORD IND.Y
WORD RELATV
.WORD ZEROPG
WORD ZERO.X
.WORD ZERO.Y

Each addressing mode subroutine will return with SELECT pointing at the last
byte in the instruction, with A holding the number of characters in the operand
field, and with X holding the number of bytes in the operand (0, 1, or 2). Each ad-
dressing mode subroutine will return to OPERND, which will finish the line by call-
ing FINISH.

Finishing the Line: FINISH

FINISH must space over to the proper column for field 3, which will hold the
address of the opcode. Then it must print the address of the opcode and dump 1, 2 or
3 bytes, as necessary. FINISH will end by advancing the printhead to a new line and
by advancing SELECT so that it points to the first byte following the disassembled
line (unless it has disassembled through EA, the ending address, in which case it will
return with SELECT = EA). FINISH returns PLUS if more bytes must be
disassembled before EA is reached; it returns MINUS if it disassembled through EA.

FINISH STA OPCHRS Save the length of the operand,
STX OPBYTS in characters and in bytes.
DEX If necessary, decrement the
BMI SEL.OK SELECT pointer so it
LOOP.1 JSR DEC.SL points to the opcode.
DEX
BPL LOOP.1
SEL.OK SEC Space over to the
LDA ADRCOL column for the address field:
SBC #4 Operand field started in column 4...
SBC OPCHRS ... and includes OPCHRS characters.
TAX So now we need X spaces.
JSR SPACES Send enough spaces to reach address
column.
JSR PR.ADR Print address of opcode.
LOOP.2 JSR SPACE Space once.
JSR DUMPSL Dump selected byte.
JSRINC.SL Select next byte.

A TABLE-DRIVEN DISASSEMBLER 131

DEC OPBYTS Completed last byte in instruction?

BPL LOOP.2 If not, do next byte,
JSR DEC.SL Back up SELECT to last byte in
operand.

FINEND JSR CR.LF Advance to a new line.

RTS Return to caller.
OPBYTS .BYTE Number of bytes in operand.
OPCHRS .BYTE O Number of characters in operand.
ADRCOL .BYTE 16 Starting column for address field.

Now we can disassemble a line. So let’s write the disassemblers, one for the
printer and one for the screen. These routines will have much the same structure as
TVDUMP and PRDUMP, which direct hexdumps to the printer or to the screen.

Disassemble to Screen: TY.DIS

TV.DIS LDA DISLNS Initialize line counter with
STA LINUM number of lines to be disassembled.
LDA #$FF Set end address to $FFFF,
STA EA s0 NEXTSL will always increment
STA EA+1 the SELECT pointer.
JSR TVT.ON Select TVT as an output device. (Other

selected devices will echo the
disassembly.)

TVLOOP JSR DSLINE Disassemble one line.
DEC LINUM Completed last line yet?
BNE TVLOOP If not, disassemble next line.
RTS If so, return.
DISLNS BYTE 5 DISLNS holds number of lines to be

disassembled by TV.DIS. To disassem-
ble one line, set DISLNS=1.

LINUM BYTEO This variable keeps track of the number
of lines yet to be disassembled.

Printing Disassembler: PR.DIS

The printing disassembler (PR.DIS) will announce itself by displaying “PRINT-
ING DISASSEMBLER” on the screen, but not on the printer. It will then let the user
set the starting and ending addresses, in the same manner as PRDUMP. When the
user has specified the block of memory to be disassembled, the PR.DIS will print a
disassembly of the specified block of memory, echoing its output to the screen.

132 BEYOND GAMES

PR.DIS JSR PR.OFF Deselect printer.

JSR TVT.ON Select TVT.
JSR PRINT: Display title:
.BYTE TEX
.BYTE CR,LF ‘
.BYTE ‘PRINTING DISASSEMBLER’
.BYTE CR,LF,ETX)
JSR.SETADS Let user set starting address
: and end address.
JSR GOTOSA . Set SELECT = Start address.
JSR PR.ON Select the printer,
PRLOOP JSR DSLINE Disassemble one line.
BPL PRLOOP If it wasn't the last line, disassemble the
next one.
RTS Return to caller.

With PR.DIS and TV.DIS, you can disassemble any block of memory, direct-
ing the disassembly to the screen or to the printer. See Chapter 12 for guidance on
mapping these two disassemblers to function keys in the Visible Monitor.

A TABLE-DRIVEN DISASSEMBLER 133

Chapter 10:

A General MOVE Ultility

Many computer programs spend a lot of time moving things from one place to
another. Such programs should be able to call a move utility for most of this work.
A move utility should:

® Be general enough to move anything of any size from any place in memory

to anywhere else,

@ Not be upset when the origin block overlaps the destination.

© Have entry points with input configurations convenient to different callers,

® Preserve its inputs,

® Be fast,

This routine will be called often. A calling program doesn’t want to spend all its
time here. The cost of that speed is size, because we'll use straight-line, dedicated
code to handle each of several special cases, but even so this move code will weighin
at less than 200 bytes. That's less than three percent of the memory available on a
system with 8 K bytes of programmable memory,

Input Configurations
Different callers may find different input configurations convenient, so let’s
provide more than one entry point, each requiring different parameters to be set,

The following two subroutine entry points are likely to meet the needs of most
callers;

MOV.EA Move a block, defined by its starting address (SA), its ending

134 BEYOND GAMES

address (EA), and its destination address (DEST).
MOVNUM Move a block, defined by its starting address, the number of
bytes in the block (NUM), and the destination of the block.

MOV.EA will simply be a “front end” for MOVNUM. It w1ll set NUM = end-
ing address — starting address of the source block.

Handling Overlap

There will be no problem with overlap if we always move from the leading edge
of the source block — that is, copy up beginning with the highest byte to be moved,
and copy down beginning with the lowest byte to be moved. This way, if a byte in
the source block is overwritten it will already have been copied to its destination.

Going Up?

To avoid overlap, MOVNUM must determine whether it's copying up or
down. Therefore, before moving anything it must see if the destination address is
greater or lesser than the starting address. Then it can branch to MOVE-UP or

MOVE-DOWN as appropriate.

NUMBER =
END ADDRESS -~
START ADDRESS

Figure 10.1: Top level of block mowve.
Flowchart of MOVE.EA and MOV-
NUM routines.

MOVE DOWN

RETURN RETURN
BEARING OKAY BEARING OKAY
CODE CODE

Using the flowchart of figure 10.1 as a guide, let’s write source code for the top
level of MOV.EA and MOVNUM:

A GENERAL MOVE UTILITY 135

MOV.EA

MOVE.1

ER.RTN

MOVNUM
SAVE

OK.RTN
RESTOR

NUM

136 BEYOND GAMES

GETPIR = 0

This is the input-page pointer.

PUTPTR = GETPTR+2 This is the output-page pointer.

SEC

LDX EA+1
LDA EA

SBC SA

STA NUM
BCS MOVE.1
DEX

SEC

TXA

SBC SA+1
STA NUM+1
BCS MOVNUM
LDA #ERROR
RTS

LDY #3

LDA GETPIR,Y
PHA

DEY

BPL SAVE

SEC

LDA SA+1
CMP DEST+1
BCC MOVEUP
BNE MOVEDN
LDA SA

CMP DEST
BCC MOVEUP

BNE MOVEDN

LDY #0

PLA

STA GETPTR,Y
INY

CPY #4

BNE RESTOR
RTS

.WORD 0

Set NUM = EA — SA

Now NUM = EA — SA.
If EA less than SA,
return with error code.
Save the 4 zero-page
bytes we'll use.

Is DEST less than START?

If so, we'll move down.

If not, we'll move up.

SA, destination are in the same
page.

If SA more than destination, we'll
move down. If SA less than destina-
tion,

we'll move up. If they are equal, we'll
return bearing okay code.

Restore 4 zero-page bytes that were
used by the move code.

Restored last byte yet?

If not, restore next one. If so,

return, with move complete and zero
page preserved.

This 16-bit variable holds the number of

bytes to be moved.

Optimizing for Speed

Moving a page at a time is the fastest way to move data, and for large blocks we
can move most of the bytes this way. Therefore, when moving data we'll move one
page at a time until there is less than a page to move; then we'll move a byte at a time
until the entire source block is moved. MOVE-UP and MOVE-DOWN must test to
see if they have more or less than a page to move, and then branch to dedicated code

that either moves a page or moves less than a page.

Figure 10.2: Move a block up.
Flowchart of the MOVEUP routine.

MOVE-UP

mMoveup

SET PAGE POINTERS
TO HIGHEST PAGE IN
SOUR

CE
DESTINATION BLOCKS

YES

MOVE A PAGE UP,
STARTING AT THE TOP

DECREMENT PAGE
POINTERS

MORE
THAN A
PAGE LEFT
TO MOVE
P

NO

MOVE LESS THAN A
PAGE UP, STARTING
AT THE TOP

RETURN BEAR-
ING OKAY CODE

Using figure 10.2 as a guide, we can write source code for MOVE-UP:

A GENERAL MOVE UTILITY 137

MOVEUP

NEXT.1

NEXT.2

NEXT.3

138 BEYOND GAMES

LDA NUM+1
BEQ LESSUP

LDY NUM +1
LDA NUM
SEC

SBC #$FF.

BCS NEXT.1
DEY
TAX

STY PUTPTR+1
TXA

CLC

ADC SA

STA GETPTR
BCC NEXT.2
INY

TYA

ADC SA+1
STA GETPTR+1

TXA

CLC

ADC DEST

STA PUTPTR
BCC NEXT.3
INC PUTPTR+1
LDA PUTPTR+1
ADC DEST+1
STA PUTPTR+1

More than one page to move?

If not, move less than a page up.

To move more than a page, set the page
pointers GETPTR and PUTPTR to the
highest pages in the source and destina-
tion blocks. To do this, treat X as the
high byte and Y as the low byte of a
pointer, which we'll call (X,Y). First set
(X,Y) = NUM — $FF, the relative ad-
dress of the highest page in the block.
Now Y is high byte of block size.

Now A is low byte of block size.
Prepare to subtract.

Now A is a low byte of (block size —
$FF.)

Now (X,Y) = NUM — $FF.
X is low byte, Y is high byte of NUM —
$FF.

Prepare to add.

Now GETPTR = SA 4+ NUM — $FF
(the last page in the origin block).

Prepare to add.

Now PUTPTR = DEST + NUM - $FF
(the last page in the destination block).
Now the page pointers (GETPTR and
PUTPTR) point to the last page in, respec-
tively, the origin and destination blocks.

PAGEUP
UPLOOP

LESSUP

SOMEUP

LOPAGE

LDX NUM+1
LDY #$FF

LDA (GETPTR),Y
STA (PUTPTR),Y
DEY

BNE UPLOOP
LDA (GETPTR),Y
STA (PUTPTIR),Y
DEC GETPTR+1
DEC PUTPTR+1
DEX

BNE PAGEUP
JSR LOPAGE

LDY NUM

LDA (GETPTR),Y
STA (PUTPTR),Y
DEY

CPY #3$FF

BNE SOMEUP
JMP OK.RTN
LDA SA

STA GETPTR
LDA SA+1

STA GETPTR+1
LDA DEST

STA PUTPTR
LDA DEST+1
STA PUTPTR+1
RTS

Move-Down: MOVEDN

Figure 10.3 shows an algorithm for moving a block of data down through

memory,

Load X with number of pages to move.
Move a page up.

Get a byte from origin block.
Put it in destination block.
Adjust index for next byte down.
Loop if not the last byte.

Move last byte. ‘

Decrement page pointers.

Still more than a page to move?

If so, move up another page.

Set GETPTR, PUTPTR to bottom of
origin and destination blocks.

Set index to number of bytes to be
moved.

Move a byte.

About to move last byte?

If not, move another.

If so, return bearing “OK"” code.
Set page pointers to the bottom
of the origin and destination
blocks.

Return to caller,

A GENERAL MOVE UTILITY 139

Figure 10.3: Move a block down.
Flowchart of the MOVEDN routine.

MOVEDN

SET PAGE POINTERS TO
LOWEST PAGE IN SOQURCE,
DESTINATION BLOCKS

YES

MOVEDN JSR LOPAGE

PAGEDN

140 BEYOND GAMES

LDY #0

LDX NUM+1
BEQ LESSDN

LDA (GETPTR),Y
STA (PUTPTR),Y
INY

MOVE A PAGE DOWN,
STARTING AT THE
BOTTOM

INCREMENT PAGE
POINTERS

MORE
THAN A
PAGE LEFT
TO MOVE

YES

NO

MOVE LESS THAN A PAGE
DOWN, STARTING AT
THE BOTTOM

RETURN
BEARING OKAY
CODE

Using figure 10.3 as a guide, we can write source code for the move-down
routine:

Set page pointers to bottom of origin
and destination blocks.

Y must equal zero whether we move
more or less than a page.

More than one page to move?

If not, move less than a page down.
Move a page down.

Get a byte from origin block

and put it in destination block,
Moved last byte in page?

BNE PAGEDN
INC GETPTR+1

Increment page pointers.

INC PUTPTR+1
DEX Still more than a page to move?
BNE PAGEDN If so, move another page down.
LDY #0 Move less than a page down starting at
the bottom.)
LESSDN LDA (GETPTR),Y .Get a byte from origin...
STA (PUTPTR),Y and put it in destination block.
INY Adjust index for next byte.
SEC
CPY NUM Moved last byte yet?
BCC LESSDN If not, move another.
JMP OK.RTN If so, return to caller, bearing “OK”
code.
Speed

For large blocks of data, most bytes will be moved by the page-moving code:
PAGE-UP and PAGE-DOWN. Since the processor spends most of its time in these
loops, let’s see how long they will take to move a byte. (Appendix A5, Instruction
Execution Times, provides information on the number of cycles required for each
6502 operation.) Ordinarily I would not go into great detail concerning the speed of
execution of a small block of code, but these two loops form the heart of the move
utility, because they move most of the bytes in any large block. By making those
two loops very efficient, we can make the move utility very fast. In fact, these loops
will let us move blocks bigger than one page, at a rate approaching 16 cycles/byte
moved. (By way of a benchmark, that's more than twice as fast as the time required
to move large blocks with MOVIT, a smaller move program published in The First
Book of KIM.* MOVIT, made tiny [95 bytes] to use as little as possible of the KIM's
limited programmable memory, requires at least 33 cycles/bytes moved.)

MOVE.EA and MOVNUM are move utilities because they have input con-
figurations and performance suitable for many calling programs. But they are not
very convenient to the human user who simply wants to move something. With the
Visible Monitor and the move utility, you can move something from one place to

*Butterfield, et al, The First Book of Kim, Rochelle Park, Nj: Hayden
Book Company, 1977.

A GENERAL MOVE UTILITY 141

another, but you have to know what addresses to set and you have to know the ad-
dress of the move utility itself.

That's too much for me to remember. I want a tool, which will know the ad-
dresses and won't require me to remember them.

When I'm developing programs with the Visible Monitor and I want to move
some data or code from one place to another, I'd like to be able to call up a move
tool with a single keystroke — say “M.” It's easier for me to remember “ ‘M’ for
Move"” than it is to remember the address of the move utility and the addresses of its
inputs.

Let's say I'm using the Visible Monitor and I press “M.” This invokes the move
tool. The first thing it should do is let me know that it’s active. What if [hit the “M"
key by mistake? The computer should let me know that I've invoked a new pro-
gram.

It should put up a title: 'MOVE TOOL.” Then it should let me specify the start,
end, and destination addresses of a given block in memory. When these addresses
are set, the move tool can call MOV.EA, which will actually perform the move,
based on the addresses set by the user.

The top level of the move tool is therefore quite simple. Figure 10.4 shows the
flowchart for the following routine:

START

CLEAR SCREEN

DISPLAY TITLE

GET STARTING
ADDRESS

GET ENDING
ADDRESS

|

GET
DESTINATION
ADDRESS

|

CALL MOV. EA

RETURN

Figure 10.4: A move tool. Flowchart of MOVER routine.

142 BEYOND GAMES

MOVER

MOVER JSR TVT.ON

JSR PRINT:

.BYTE TEX,CR

.BYTE * MOVE TOOL
.BYTE CR,LF,LF

.BYTE ETX

JSR SETADS

JSR SET.DA
JSR MOV.EA

RTS

Select screen as an output device.
Put a title on the screen.

Get starting address,

ending address, and

destination address from user.

Move the block specified by those
pointers.

Return to caller, with requested block
moved and with zero page preserved.

Of course, MOVER can work only if we have a routine that lets the user set the
destination address. Let’s write such a routine, and we'll be all set to move whatever

we like, to wherever we want it.

Set Destination Address: SET.DA

SET.DA JSR TVT.ON

JSR PRINT:
.BYTE TEX
BYTE CR,LF,LF
.BYTE

BYTE

BYTE ETX

JSR VISMON

DAHERE LDA SELECT
STA DEST

LDA SELECT+1
STA DEST+1
RTS

DEST .WORD 0

Select TVT as an output device. All
other selected output devices will echo
the screen output.

Put prompt on the screen:

“SET DESTINATION ADDRESS "
“AND PRESS Q.”

Call the Visible Monitor, so user can
specify a given address.

Set destination address equal to
address set by the user.

Return to caller.
Pointer to destination of block to be
moved.

A GENERAL MOVE UTILITY 143

See Chapter 12, Extending the Visible Monitor, to learn how to hook the
move tool into the Visible Monitor by mapping it to a given key. Then to move
anything in memory to anywhere else, you need only strike that key and the move

tool will do the rest.

144 BEYOND GAMES

Chapter | 1:
A Simple Text Editor

With the Visible Monitor you can enter ASCII text into memory by placing the
arrow under field 2 and striking character keys. But you must strike two keys for
every character in the message: first the character key, to enter the character into the
displayed address, and then the space bar, to select the next address. Furthermore, if
you want to enter an ASCII space or carriage return into memory, you'll have to
place an arrow under field 1 and enter the hexadecimal representation of the desired
character: $20 for a space; $0D for a carriage return. Then, of course, you'll have to
hit the space bar to select the next address, and the “greater than” key to move the
arrow back underneath field 2, so that you can enter the next character into
memory.

If you only need to enter up to a dozen ASCII characters at a time, then the Vis-
ible Monitor should meet your needs. When you need to enter longer messages into
memory, you'll find yourself wanting a more suitable tool — a simple text editor.

Text editors come in many different shapes, sizes and formats. A line-oriented
editor, suitable for creating and editing program source files, requires that you enter
and edit text a line at a time. Usually each line must be numbered when it is entered;
then, in order to edit a line, you must first specify it by its line number.

On the other hand, a character-oriented editor allows you to overstrike, insert,
or delete characters anywhere in a given string of characters. Character-oriented
editors are frequently found in word processors for office applications, but don't get
your hopes up; this chapter will not present software nearly as sophisticated as that
available in even the humblest of word processors. However, it will present a very
simple character-oriented editor that will enable you to enter and edit text strings,
such as prompts, anywhere in memory.

A SIMPLE TEXT EDITOR 145

Structure

The text editor will have the three-part structure shown in figure 11.1. From this
we can write source code for the top level of the text editor:

INITIALIZE POINTERS

DISPLAY
CURRENT TEXT

GET A KEYSTROKE
AND HANDLE IT

|

Figure 11.1: Structure of simple text editor.

EDITOR JSR SETBUF Initialize pointers and variables required
by the editor.
EDLOOP JSR SHOWIT Show the user a portion of the text
buffer,
JSR EDITIT Let the user edit the buffer or move
about within it,
CLC
BCC EDLOOP Loop back to show the current text.

Look familiar? It should. This is essentially the same structure used in the Vis-
ible Monitor. It's a simple structure, well-suited to the needs of many interactive dis-
play programs.

SETBUF

The text editor will operate on text in a portion of memory called the text buf-
fer. Because the editor must be able to change the contents of the text buffer, the buf-
fer must occupy programmable memory and may not be used for any other pur-
pose. This exemplifies a problem familiar to programmers: how to allocate memory
in the most effective manner. Memory used to store a program cannot be used at the
same time to store text; nor can memory allotted to the text buffer be used for stor-

146 BEYOND GAMES

ing programs or variables.

How do you get five pounds of tomatoes into a four-pound-capacity sack —
without crushing the tomatoes or tearing the sack? You don't. If you want to store a
lot of text in your computer’s programmable memory, you might not have room for
much of a text editor. On the other hand, an elaborate text editor, requiring a good
deal of programmable memory for its own code, may not leave much room in your
system for storing text. ’

Therefore, this text editor leaves the allocation of memory for the text buffer to
the discretion of the user. A subroutine called SETBUF sets pointers to the starting
and ending addresses of the text buffer. The rest of the editor then operates on the
text buffer defined by those pointers.

SETBUF sets the starting and ending addresses of the edit buffer. If you always
want to enter and edit text in the same buffer, then substitute your own subroutine
to set the starting and ending addresses to the values you desire. Otherwise, use the
following version of SETBUF, which lets the user define a new text buffer each time
it is called.

For testing purposes, you might even want to set the text buffer completely in-
side screen memory. This allows you to see exactly what's happening inside the text
buffer.

SETBUF
SETBUF JSR TVT.ON Select TVT.
JSR PRINT: Display “SET UP EDIT BUFFER.”

.BYTE TEX,CR,LF,LF
.BYTE ‘SET UP EDIT BUFFER'
.BYTE CR,LF,LF,ETX

GETADS JSR SETADS Let user set starting address and end ad-
dress of edit buffer.
JSR GOTOSA Now SELECT == starting address of edit
‘ buffer.
RTS Return to caller.

This version of SETBUF allows the user to set the text buffer anywhere in mem-
ory, provided that the ending address is not lower in memory than the starting
address. It returns with the SELECT pointer pointing at the starting address of the
buffer.

A SIMPLE TEXT EDITOR 147

SHOWIT

Now that SETBUF has set the pointers associated with the text buffer, let’s
figure out how to display part of that buffer.

Figure 11.2 shows the simple 3-line display to be used by the text editor. “X”
marks the home position of the edit display. Everything in the edit display is relative
to the home position. Thus, to move the edit display about on your screen (ie: from
the top of the screen to the bottom of the screen), you need only change the home
position, which is set by SHOWIT.

LINE 1: x
LINE 2: SOME CHARACTERS FROM TEXT BUFFER GO HERE
LINE 3: M4 HHHH

Figure 11.2: Three-line display of simple text editor.

Line 1 is entirely blank. Its only purpose is to separate the text displayed in line
2 from whatever you may have above it on your screen.

Line 2 displays a string of characters from the edit buffer. The central character
in line 2 is the current character. The current character is indicated by an upward-
pointing arrow as in line 3. The address of the current character is given by the four
hexadecimal characters represented by “HHHH" in line 3.

The letter “M” in line 3 shows you where a graphic character will indicate the
current mode of the editor.

Modes

This editor will have two modes: overstrike mode and insert mode. In over-
strike mode you overstrike, or replace, the current character with the character from
the keyboard. In insert mode, you insert the keyboard character into the text buffer
just before the current character. How one sets these modes, a function for the
subroutine EDITIT, will be discussed later. But SHOWIT must know the current
mode in order to display the proper graphic in line 3 of the editor display.

Since we're going to have two modes, let’s keep track of the current mode of the
editor with a 1-byte variable called EDMODE. We'll assign the following values to
EDMODE:

148 BEYOND GAMES

EDMODE = 0 when the editor is in overstrike mode.
EDMODE = 1 when the editor is in insert mode.

Any other value of EDMODE is undefined and therefore illegal. If SHOWIT
should find that EDMODE has an illegal value, then it should set EDMODE to some
legal default value — say, zero. That would make overstrike the default mode for
the editor. -

We'll also need two graphics characters, INSCHR and OVRCHR, to indicate in-
sert and overstrike modes, respectively. In this chapter, the character to indicate a
given edit mode will simply be the first initial of the mode name: “0” for overstrike
mode, “1” for insert mode.

SHOWIT
SHOWIT JSR TVPUSH Save the zero-page bytes we'll use.
JSR TVHOME Set home position of the
edit display.
LDX TVCOLS Clear 3 rows for the
LDY #3 edit display.
JSR CLR.XY
JSR TVHOME Restore TV.PTR to home position of
edit display.
JSR TVDOWN Set TV.PTR to beginning of
JSR TVPUSH line 2 and save it.
JSR LINE.2 Display text in line 2.
JSR TV.POP Set TV.PTR to beginning
JSR TVDOWN of line 3,
JSR LINE.3 Display line 3.
JSR TV.POP Restore zero-page bytes used.
RTS Return to caller, with edit display on

screen, rest of screen unchanged, and
zero page preserved.

Of course, SHOWIT can work only if it can call a couple of routines (LINE.2
and LINE.3) to display lines 2 and 3 of the editor display, respectively. Let's write
those routines.

A SIMPLE TEXT EDITOR 149

Display Text Line

To display the text line, we simply need to copy a number of characters from
the text buffer to the second line of the editor display. Since the screen is TVCOLS
wide, we should display TVCOLS number of characters in such a way that the cen-~
tral character in the display is the currently selected character. We can do that if we
decrement SELECT by TVCOLS/2 times, and then display TVCOLS number of

characters:

LINE.2

LOOP.1

LOOP.2

JSR PUSHSL
LDA TVCOLS
LSR A

TAX

DEX

DEX

JSR DEC.SL
DEX

BPL LOOP.1
LDA TVCOLS
STA COUNTR
JSR GET.SL
JSRTV.PUT
JSR TVSKIP
JSR INC.SL
DEC COUNTR
BPL LOOP.2
JSR POP.SL
RTS

Display Status Line

LINE.2

Save SELECT pointer.
Set X equal

to half the width

of the screen.

Decrement SELECT X times.

Initialize COUNTR. (We're

going to display TVCOLS characters.)
Get a character from buffer.

Put it on screen.

Go to next screen position,

Advance to next byte in buffer.

Done last character in row?

If not, do next character.

Restore SELECT from stack.

Return to caller.

Line 3 of the editor display provides status information: identifying the current
mode of the editor, pointing at the current character in line 2 of the edit display, and
providing the address of the current character.

150 BEYOND GAMES

LINE.3

LINE.3 LDA TVCOLS
LSR A A = TVCOLS/2
SBC #2 A = (TVCOLS/2) - 2
JSR TVPLUS Now TV.PTR is pointing 2 characters to
the left of center of line'3 of the edit
- display.
LDA EDMODE What is current mode?
CMP #1 Is it insert mode?
BNE OVMODE If not, it must be overstrike mode.
LDA #INSCHR If so, load A with the insert graphic.
CLC
BCC TVMODE
OVMODE LDA #OVRCHR Load A with the overstrike graphic.
TVMODE JSRTV.PUT Put mode graphic on screen,
LDA #2
JSR TVPLUS Now TVPTR is pointing at the center of
line 3 of the edit display.
LDA ARROW Display an up-arrow here,
JSR TV.PUT pointing up at the current character,
LDA #2
JSR TVPLUS Now TV.PTR is pointing at the position
reserved for the address of the current
character. :
LDA SELECT+1 Display address of current
JSR VUBYTE character,
LDA SELECT
JSR VUBYTE
RTS Return to caller.

We've chosen to define the editor’s current character as the character pointed to
by SELECT. We've already developed some subroutines that operate on the SELECT
pointer and on the currently selected byte, so we won't have to write many new
editor utilities; instead, we can use many of the SELECT utilities presented in earlier
chapters,

Edit Update
Now we can display the three lines of the edit display. What else must the editor

do? Oh, yes: it must let us edit, Here's a reasonably useful, if small, set of editor
functions;

A SIMPLE TEXT EDITOR 151

® Allow the user to move forward through the message.

@ Allow the user to move backward through the message.

@ Allow the user to overstrike the current character.

@ Allow the user to delete the current character.

@® Allow the user to delete the entire message.

@ Allow the user to insert a new character at the current character position.
@ Allow the user to change modes from insert to overstrike and back again.

@ Print the message.

® Allow the user to terminate editing, thus causing the editor to return to its

caller.

What keys will perform these functions? I'll leave that up to you by treating the
editor function keys as variables and keeping them in a table called EDKEYS (see
Appendix C11). To assign a given function to a given key, store the character code
generated by that key in the appropriate place in the table:

EDITIT JSR GETKEY
CMP QUITKY
BNE DO.KEY
PHA

JSR GETKEY
CMP QUITKY
BNE NOTEND

ENDEDT PLA
PLA
PLA
RTS
NOTEND STA TEMPCH

PLA

JSR DO.KEY
LDA TEMPCH

152 BEYOND GAMES

EDITIT

Get a keystroke from the user.

Is it the “quit” key?

If not, do what the key requires.
Save the key on the stack. If the user
gives us 2 “quit” keys in a row, we
should exit the editor. So let's see if
another QUITKY follows:

Is this key a “quit” key?

If not, then this is not the end of the
edit session, so we'd better handle both
of those keys, and in their original
order,

End the edit session:

Pop first “quit” key from stack.

Pop from stack the return address to
the editor’s top level.

Return to the editor’s caller.

Save the key that followed the “quit”
key.

Pop first “quit” key from stack.
Handle it.

Restore to the accumulator the key that
followed the “quit” key.

DO.KEY

DO.END
IENEXT

IFPREV

IF.RUB

IF.PRT

IFFLSH

CHARKY

STRIKE

CMP MODEKY
BNE IENEXT
DEC EDMODE
BPL DO.END
LDA #1

STA EDMODE
RTS

CMP NEXTKY
BNE IFPREV
JSR NEXTCH

RTS

CMP PREVKY
BNE IF.RUB
JSR PREVCH

RTS

CMP RUBKEY
BNE IF.PRT
JSR DELETE
RTS

CMP PRTKEY
BNE IFFLSH
JSR PRTBUF
RTS

CMP FLSHKY
BNE CHARKY
JSR FLUSH
RTS

LDX EDMODE
BEQ STRIKE
JSR INSERT
RTS

JSR PUT.SL

“DO.KEY"” does what the key in the ac-
cumulator requires:

Is it the “change mode” key?

If not, perform the next test.

If so, change the editor’s mode...

and return.

- Is it the “next” key?

If not, perform the next test,

If so, advance the current position by
one character...

and return.

Is it the “previous” key?

If not, perform the next test.

If so, back up the current position by
one character...

and return.

Is it the “delete” key?

If not, perform the next test,

If so, delete the current character...

and return.

Is it the “print” key?

If not, perform the next test.

If so, print the buffer...

and return.

Is it the “flush” key?

If not, perform the next test.

If so, flush all text in the edit buffer...
and return.

OK. It's not an editor function key, so it
must be a regular character key. There-
fore, if we're in overstrike mode we'll
overstrike the current character with the
new character, and if we're in insert
mode we'll insert the new character at
the current character position.

Are we in overstrike mode?

If so, overstrike the character.

If not, insert the character...

and return.

Put the character into the currently
selected address, which is the address of

A SIMPLE TEXT EDITOR 153

INSERT

NEXT

OPENUP

ENDINS

154 BEYOND GAMES

JSR NEXTSL
RTS
PHA

JSR PUSHSL

LDA SA+1
PHA

LDA SA
PHA

LDA EA+1
PHA

LDA EA
PHA

JSR SAHERE

JSR NEXTSL
BMI ENDINS

JSR DAHERE

LDA EA
BNE NEXT
DEC EA+1
DEC EA

JSR MOV.EA

PLA
STAEA
PLA
STAEA+1
PLA

STA SA

the current character.

Advance to the next character position,
and return to caller.

Save the character to be inserted, while
we make space for it in the edit buffer...
Push the address of the current character
onto the stack.

Push starting address of the buffer

onto stack.

Push ending address of the buffer
onto stack.

Set SA = SELECT, so current character
will be the start of the block we'll move.
Advance to next character position in
the text buffer.

If we're at the end of the buffer, we'll
overstrike instead of inserting,.

Set DEST = SELECT, so destination of
block move will be 1 byte above block's
start address (ie, we'll move a block up
by 1 byte).

Decrement end address

so we won't move text

beyond the end of

the text buffer.

Now the starting address is the current
character, the destination address is the
next character, and the ending address is
one character shy of the last character in
the buffer. We're ready now to move a
block.

Open up 1 byte of space at the current
character’s location, by moving to DEST
the block specified by SA and EA.
Restore EA so it points to the last byte
in the edit buffer.

Restore SA so it points to the first byte
in the edit buffer.

PLA

STA SA+1
JSR POP.SL Restore SELECT so it points to the cur-
; rent character,

PLA Reload the accumulator with the
character to be inserted. Since we've
created a 1-byte space for this character,

- we need only overstrike it.

JSR STRIKE

RTS " Return to caller.

EDITIT looks like it will do what we want it to do — provided that it may call
the following (as yet unwritten) subroutines:

® NEXTCH — Select next character.

® PREVCH— Select previous character.
® FLUSH — Flush the buffer.

® PRTBUF — Print the buffer.

Let's write them.

Select Next Character

We want to be able to advance through the text buffer, but we don't want to be
able to go beyond the end of the buffer or beyond the end of the message. The end of
the message will be indicated by one or more ETX (end-of-text) characters. ETX
characters will fill from the last character in the message to the end of the buffer. So
if the current character is an ETX, we shouldnt be allowed to advance through
memory. Or, if the current character is the last byte in the edit buffer, we shouldn't
be allowed to advance through memory. But if we aren't at the end of our text for
one reason or another, select the next character by calling the NEXTSL subroutine:

NEXTCH
NEXTCH JSR GET.SL Get currently selected character.
CMP #ETX Is it an ETX?
BEQ AN.ETX If so, return to caller, bearing a negative

return code.

A SIMPLE TEXT EDITOR 155

AN.ETX

JSR NEXTSL
RTS

LDA #$FF
RTS

Select Previous Character

If not, select next byte in the buffer, and
return positive if we incremented
SELECT; negative if SELECT already
equaled EA.

Since we are on an ETX, we won't incre-

ment
SELECT; we'll just return with a
negative return code.

The PREVCH (select-previous-character routine) should work in a manner
similar to that used by NEXTCH. NEXTCH increments the SELECT pointer and
returns plus, unless SELECT is greater than or equal to EA, in which case NEXTCH
preserves SELECT and returns minus. Conversely, PREVCH should decrement
SELECT and return plus, unless SELECT is less than or equal to SA, in which case it
should preserve SELECT and return minus:

PREVCH

SL.OK

NOT.OK

156 BEYOND GAMES

SEC
LDA SA+1

CMP SELECT +1

BCC SL.OK
BNE NOT.OK

LDA SA

CMP SELECT
BEQ NO.DEC
BNE NOT.OK

JSR DEC.SL

LDA #0

RTS

LDA SA
STA SELECT
LDA SA+1

PREVCH

Prepare to compare.

Is SELECT in a higher page than SA?

If so, SELECT may be decremented.

If SELECT is in a lower page than SA,
then it's not okay. We'll have to fix it.
SELECT is in the same page as SA.

Is SELECT greater than SA?

If SELECT = SA, don't decrement it.

If SELECT is less than SA, it's not okay,
so we'll have to fix it.

SELECT is OK, because it's greater than
SA. Thus, we may decrement it and it
will remain in the edit buffer.

Set a positive return code...

and return.

Since SELECT is less than SA, it is

not even in the edit buffer. So give
SELECT a legal value, by setting

it = SA. '

STA SELECT+1

LDA #0 Set a positive return code...
RTS. and return.

NO.DEC LDA #$FF SELECT = SA, so change nothing. Set
RTS a negative return code and return.

Flush Buffer

To flush the buffer, we'll just fill the buffer with ETX characters:

FLUSH

FLUSH JSR GOTOSA Set SELECT to the first character posi-
tion in the buffer.

FLOOP LDA #ETX Load accumulator with an ETX
character...

JSR PUT.SL and put it into the buffer.

JSR NEXTSL Advance to next byte.

BPL FLOOP If we haven't reached the last byte in the
buffer, let's repeat the operation for this
byte.

JSR GOTOSA If we have reached the last byte in'the
buffer, let’s set SELECT to the beginning

' of the buffer...

JSR RTS and return.

Print Buffer

To print the buffer, we must print the characters in the edit buffer up to, but not
including, the first ETX. Even if there is no ETX in the buffer, we must not print
characters from beyond the end of the buffer:

PRTBUF
PRTBUF JSR GOTOSA Set SELECT to the start of the buffer.
PRLOOP JSR GET.SL Get the currently selected character.
CMP #ETX Is it an ETX character?
BEQ ENDPRT If so, stop printing and return.

A SIMPLE TEXT EDITOR 157

ENDPRT

JSR PR.CHR
JSR NEXTCH

BPL PRLOOP

RTS

Delete Current Character

If not, print it on all currently selected
devices.

Advance SELECT by 1 byte within the
buffer.

If we haven't reached the end of the buf-
fer, let’s get the next character from the
buffer, and handle it.

Since we reached the end of the buffer,
let’s return.

When this routine returns, the current
character is at the end of the message.

To delete the current character, we'll take all the characters that follow it in the
text buffer and move them to the left by 1 byte. Here's some code to implement such

behavior:

DELETE

158 BEYOND GAMES

JSR PUSHSL
LDA SA+1
PHA

LDA SA
PHA

JSR DAHERE

JSR NEXTSL
JSR SAHERE

JSR MOV.EA

PLA

STA SA
PLA

STA SA+1

Save address of current character,
Save buffer’s start address.

Set DEST = SELECT, because we'll
move a block of text down to here, to
close up the buffer at the current
character,

Advance by 1 byte through text buffer,
if possible.

Set SA = SELECT, because the block
we'll move starts 1 byte above the cur-
rent character. (Note; the end address of
the block we'll move is the end address
of the text buffer.)

Move block specified by SA, EA, and
DEST.

Restore initial SA (which

is the start address of the

text buffer, not of the block

we just moved).

JSR POP.SL Restore SELECT = address of the cur-
rent character.
RTS Return to caller.

That's the last of the utilities we need. We now have enough code to comprise a
simple text editor. Appendices C10 and C11 are listings of this text editor, showing
key assignments that work on an Ohio Scientific C-IP. If you have a different system
or prefer your editor functions mapped to different keys, simply change the values
of the variables in the key table. If you don’t want to have a given function, then for
that function store a keycode of zero. You'll find this editor very handy for entering
tables of ASCII characters into memory, and for entering, editing, and printing
short text strings such as titles for your hexdumps and disassembler listings.

A SIMPLE TEXT EDITOR 159

Chapter| 2:
Extending the Visible Monitor

At this point you have the Visible Monitor, the print utilities, two hexdump
tools, a table-driven disassembler, a move tool, and a simple text editor. Wouldn't it
be nice if they were all combined into one interactive software package? Then you
could call any tool or function with a single keystroke. Since the Visible Monitor
already uses several keys (0 thru 9; A thru F; G; Space; Return; and Rubout or
Clear-Screen), we'll have to map these new functions into unused keys.

Here’s a list of keys and the functions they will have in the extended monitor:

Call a HEXDUMP tool (TVDUMRP if the printer is not selected;
PRDUMP if the printer is selected).

Call MOVER, the move tool.

Toggle the printer flag.

Call the text editor.

Toggle the user output flag.

Call the disassembler (TV.DIS if the printer is not selected; PR.DIS if the
printer is selected).

~gH9Z T

With this assignment of keys to functions, we can select or deselect the printer
at any time just by pressing “P,” and likewise the user-driven output device just by
pressing “U.” We can print or display a hexdump just by pressing “H" and print or
display a disassembly just by pressing “?” (which is almost mnemonic if we think of
the disassembler as an answer to our question, “What's in the machine?”). We can
move anything from anywhere to anywhere else by pressing “M" for move, and we
can enter and edit text just by pressing “T" for text editor.

160 BEYOND GAMES

Here's some code to provide these features. Since we want to extend the
monitor, this subroutine is called EXTEND:

EXTEND

IF.U

IF.H

NEXT.1

IFM

IF.DIS

NEXT.2

IE. T

CMP #P
BNE IF.U
LDA PRINTR
EOR #$FF
STA PRINTR
RTS

CMP #U
BNE IF.H
LDA USR.EN
EOR #$FF
STA USR.FN
RTS

CMP #H
BNE IF.M
LDA PRINTR
BNE NEXT.1
JSR TVDUMP
RTS

JSR PRDUMP
RTS

CMP #M
BNE IF.DIS
JSR MOVER
RTS

CMP #7

BNE IF.T
LDA PRINTR
BNE NEXT.2
JSR TV.DIS
RTS

JSR PR.DIS
RTS

CMP #T
BNE EXIT

EXTEND

When EXTEND is called by the Visible
Monitor's UPDATE routine, a character
from the keyboard is in the ac-

- cumulator.

Is it the “P" key?

If not, perform the next test.
If so, toggle the

printer flag...

and return to caller.

Is it the “U" key?

If not, perform the next test.
If so,

toggle the user-output
flag...

and return.

Is it the “H" key?

If not, perform the next test.
Is the printer selected?

If so, print a hexdump.

If not, dump to screen...
and return.

Print a hexdump...

and return,

Is it the “M" key?

If not, perform the next test.
If so, call the move tool.
...and return,

Is it the “?” key?

If not, perform the next test.
Is the printer selected?

If so, print a disassembly.

If not, dump to screen...
and return.

Print a disassembly...

and return.

Is it the “T" key?

If not, return.

EXTENDING THE VISIBLE MONITOR 161

JSR EDITOR If so, call the text editor...
RTS and return.
EXIT RTS Extend this subroutine by adding more
test-and-branch code here.

The only remaining step is to modify the Visible Monitor's UPDATE routine so
that it calls EXTEND, rather than DUMMY, before it returns. Currently, the Visible
Monitor's UPDATE routine calls DUMMY just before it returns, with the bytes $20,
$10, and $10 at addresses $13D1, $13D2, and $13D3, respectively. To make the Visi-
ble Monitor's UPDATE routine call EXTEND (instead of DUMMY), you must
change $13D2 from $10 to $BO.

You can change this byte with the Visible Monitor itself, provided that you are
very careful not to touch any key except the keys that are legal to the unextended
Visible Monitor. Once you have changed $13D2, you may strike any key, but while
you are changing $13D2, striking a key that is not legal within the unextended Visi-
ble Monitor will cause the Visible Monitor to crash. Be careful. Once you have
changed $13D2, try out your new extensions of the Visible Monitor by pressing the
now legal keys: “H,” “M,” “P,” “U,” “2,” and “T.”

162 BEYOND GAMES

Chapter |3:

Entering the Software into
Your System

Chapters 5 thru 12 present software that will do useful work for you, but only if
you can get it into your computer’s memory. How you do that will depend on the
system you have.

If you have an Apple II, you have an extended machine-language monitor built
into your system. If the monitor doesn’t come up on RESET, you can invoke it from
BASIC with the following BASIC command:

POKE 0,0:CALL 0 [RETURN]

(The string “[RETURN]"” means press the carriage return key.)

This writes a 6502 BRK instruction into location $0000, and then executes a call
to a machine-language subroutine at location $0000. The 6502, upon encountering
the BRK instruction, will pass control to the Apple II ROM monitor. You'll know
you're in the Apple II monitor because you'll see an asterisk (*) on the screen. Your
Apple II documentation should tell you how to use this monitor to enter data into
memory, dump memory, etc.

The Ohio Scientific C-IP has a much simpler monitor than the Apple II built in-
to its ROM (read-only memory). Press BREAK on the Ohio Scientific C-IP and then
press “M.” You'll get the ROM monitor display and can use the ROM monitor to
enter hexadecimal object code into memory. Unfortunately, although the Ohio
Scientific ROM monitor lets you enter a machine-language program into memory
by hand, or even from a cassette file in the proper format, it provides no facility for

ENTERING THE SOFTWARE INTO YOUR SYSTEM 163

recording a machine-language program onto a cassette. So unless you plan to key
the Visible Monitor into memory and then leave your computer on forever, you're
out of luck. However, you can SAVE a BASIC program on cassette, and then
LOAD it from cassette. And that's the key: we'll use the OSI C-1P's ROM BASIC in-
terpreter to help get machine-language programs into memory.

And what if you have an Atari or a PET Computer? Each of these systems fea-
tures a BASIC interpreter in ROM (read-only memory), but lacks a machine-lan-
guage monitor. How can you enter hexadecimal object code into memory using only
a BASIC interpreter? Perhaps more importantly, even if we manage to enter that ob-
ject code into memory, how can we save that object code onto a cassette? If all we
have is a BASIC interpreter, the simplest solution is to make our object code look
like a BASIC program.

That's not so hard. A BASIC program may contain DATA statements, so a
simple BASIC program can contain a number of DATA statements, where the
DATA statements actually represent, in decimal, the values of successive bytes in
the object code. Then the BASIC program can READ those DATA statements and
POKE the values it finds into the appropriate section of memory.

Using BASIC to Load Machine Language

The software in this book can be entered into your computer by RUNning just
such a series of BASIC programs. Each of these programs consists of an OBJECT
CODE LOADER followed by some number of DATA statements. The first two
DATA statements specify the range of DATA statements that follow. Each of the
following DATA statements contains ten values: the first value is the start address at
which object code from the line is to be loaded; the next eight values represent bytes
to be loaded into memory, beginning at the specified address; and the tenth value is
the checksum. The checksum is simply the total of the first nine values in the DATA
statement. Of these ten values, the first and the tenth will always be greater than
4000, and the others will always be less than 256.

Appendices E1 through E11 contain this book’s object code in the form of such
DATA statements. You must type each of these DATA statements into your com-
puter, but the BASIC OBJECT CODE LOADER is designed to let you know if
you've made a mistake. It won't catch any error you might make while typing, but it
will catch the most likely errors. How? The answer is in the checksum. If you make a
mistake while typing in one of these DATA lines, the checksum will almost certainly
fail to match the sum of the address and the 8 bytes in the line. Then, when the
OBJECT CODE LOADER detects a checksum error, it will identify the offending
data statement by printing its line number as well as the address specified by the
offending line,

The object code loader will use the following variables:

164 BEYOND GAMES

A The address specified by a data line. Object code from that data
line is to be loaded into memory beginning at that address.

An array of DIMension 8, containing the values of 8 consecutive

The number of the first DATA statement containing object code.
The number of the last DATA statement containing object code.
A line counter, tracking theé number of data lines of object code

The calculated sum of the 8 bytes of object code and the address

specified by a given data line. If SUM equals the checksum specified

BYTE
bytes of object code as specified by a data line.
CHECK The checksum specified by a data line.
FIRST
LAST
LINE
already loaded into memory.
SUM
by that data line, then the data is probably correct.
TEMP A temporary variable.

Here is the object code loader:

100 REM

110 REM

120 DIM BYTE(8)

130 READ FIRST

140 REM

150 READ LAST

160 REM

170 FOR LINE=FIRST TO LAST
180 GOSUB 300

190 NEXT LINE

OBJECT CODE LOADER by Ken Skier

:REM Initialize BYTE array.

:REM Get the line number of the first
DATA statement containing object code.
:REM Get the line number of the last
DATA statement containing object code.
:REM Read the specified DATA lines.
:REM Load next data line into memory,
:REM If not done, read next DATA line.

200 PRINT “LOADED LINES”,FIRST,“THROUGH",LAST,“SUCCESSFULLY."”

210 END

220 REM

230 REM

240 REM

300 READ A

310 SUM=A

320 FOR J=1TO 8

321 REM

330 READ TEMP: BYTE(])=TEMP
340 SUM=SUM+BYTE(])

341 REM

350 NEXT]

360 REM

370 READ CHECK

380 IF SUM < >CHECK THEN 500

:REM If done, say so.

Subroutine at 300 handles one

DATA statement.

:REM Get address for object code.

:REM Initialize calculated sum of data.
:REM Get 8 bytes of object code from
data.

:REM Put them in the byte array, and
:REM add them to the calculated sum of
data.

:REM Now we have the 8 bytes, and we
have calculated the sum of the data.
:REM Get checksum from data line.
:REM If checksum error, handle it.

ENTERING THE SOFTWARE INTO YOUR SYSTEM 165

390 FOR J=1TO 8 :REM Since there is no checksum error,

400 POKE A +J-1,BYTE()) :REM poke the data into the specified
410 NEXT] :REM portion of memory,

420 RETURN :REM and return to caller.

430 REM

440 REM Checksum error-handling code follows,

500 PRINT “CHECKSUM ERROR IN DATA LINE”,LINE
510 PRINT “START ADDRESS GIVEN IN BAD DATA LINE IS”, A

520 END

530 REM The next two DATA statements specify
540 REM the range of DATA statements that

550 REM contain object code.

570 REM

600 DATA 1N :REM This should be the number of the
610 REM first DATA statement containing object
611 REM code.

612 REM

620 DATA 1M :REM This should be the number of the
630 REM last DATA statement containing object
631 REM code.

Once you've entered the BASIC OBJECT CODE LOADER into your
computer’s memory, SAVE it on a cassette. Remember that by itself the BASIC
OBJECT CODE LOADER can do nothing; it needs DATA statements in the proper
form to be a complete, useful program. When you're ready to create such a pro-
gram, LOAD the BASIC OBJECT CODE LOADER from cassette back into
memory. Now you're ready to append to it DATA statements from one of the E Ap-
pendices — for example, from Appendix E1. Do not append DATA statements from
more than one appendix to the same BASIC program. Append as many DATA lines
as you can, without using memory above $0FFF (decimal 4095). You can insure that
you don't run over this limit by setting 4095 as the top of memory available to your
system’s BASIC interpreter. How do you set the top of memory available to the
BASIC interpreter? That varies from system to system, so consult the B Appendix
for your system.

Before you can append to the OBJECT CODE LOADER all the DATA
statements from Appendix E1, your BASIC interpreter may give you an OUT OF
MEMORY error (MEMORY FULL). When that happens, delete the last DATA line
you appended to the OBJECT CODE LOADER. Let’s say you've appended DATA

166 BEYOND GAMES

lines 1000 thru 1022 when you get an OUT OF MEMORY error. Delete DATA line
1022. Now enter the line numbers of the first and last of the object code DATA
statements into DATA lines 600 and 620, like this:

600 DATA 1000
620 DATA 1021

DATA lines 600 and 620, the very first DATA lines in your program, tell the
BASIC OBJECT CODE LOADER how many DATA lines of object code follow.
Now the OBJECT CODE LOADER can “know” how many DATA lines to read,
without reading too few or too many. In this case, DATA lines 600 and 620 tell the
OBJECT CODE LOADKER that the object code may be found in DATA lines 1000
thru 1021.

~ Note that DATA lines 600 and 620 each contain one value, whereas the remain-
ing DATA lines each contain ten values.

Now you are ready to RUN the OBJECT CODE LOADER. Unless you're a bet-
ter typist than I am, you probably made some mistakes while typing in the DATA
lines from Appendix E1. Don't worry; the incorrect data will not be blindly loaded
into memory. If the BASIC OBJECT CODE LOADER detects a checksum error, it
will tell you so, like this:

CHECKSUM ERROR IN DATA STATEMENT 1012
START ADDRESS GIVEN IN BAD DATA LINE IS 4442,

This means that data statement 1012 has a checksum error: ie, bad data. To
help you double check, the second line of the error message specifies the start ad-
dress given by the bad data line: this is the first number in the offending data line.
These two items of information should make it easy for you to find the bad data
line—just look for the DATA statement whose line number is 1012 and whose first
value is 4442. That's the DATA statement you entered incorrectly. Now you need
only eyeball the ten numbers in that line, comparing them to the corresponding
DATA statement in Appendix E1, and you should quickly find the number or
numbers you entered incorrectly. Fix that DATA statement, and RUN the LOADER
again.

When you have entered all of the DATA statements correctly, RUNning the
LOADER will load the object code they specify into memory. The OBJECT CODE
LOADER will then print:

LOADED LINES aaaa THROUGH bbbb SUCCESSFULLY

ENTERING THE SOFTWARE INTO YOUR SYSTEM 167

where ‘aaaa’ is the number of the first DATA line of object code, and ‘bbbb’ is the
number of the last DATA line of object code in the program. This message tells you
that the BASIC OBJECT CODE LOADER has read and POKE'd the indicated range
of DATA statements into memory.

When you see this message, you have verified the program, so SAVE it on a
cassette. Then make up a new BASIC program, containing the OBJECT CODE
LOADER and the next group of DATA statements from an E Appendix. (Remember
not to append DATA lines from more than one E Appendix to the same BASIC pro-
gram.) Store in lines 600 and 620 the line numbers of the first and last DATA
statements you copied from the E Appendix. Verify and SAVE this program as well,
and then continue in this manner until you have entered, verified, and SAVE'd
BASIC programs containing all of the DATA statements in Appendices E1 thru E10,
as well as the DATA statements in the E Appendix containing system data for your
computer (one of the Appendices E11 thru E14). RUNning all of those BASIC pro-
grams will then enter all of the software presented in this book into your computer’s
memory.

At this point, you should be ready to transfer control from your computer’s
BASIC interpreter to the VISIBLE MONITOR.

Activating the Visible Monitor

Once you have entered the object code for the Screen Utilities, the Visible
Monitor, and the System Data Block into your system, you can activate the Visible
Monitor by causing the 6502 in your computer to execute a JSR (jump to subroutine)
to $1207.

Using the Ohio Scientific C-IP ROM monitor, you can activate the Visible
Monitor simply by typing:

1207G

Using the Apple II ROM monitor, you can call the Visible Monitor with the
command:

G1207 [RETURN]

Using the Atari 400 or 800 with its BASIC cartridge plugged in, you can invoke
the Visible Monitor with the BASIC command:

168 BEYOND GAMES

X=USR(4615) [RETURN]

In Atari BASIC, you can call a machine-language subroutine by passing the ad-
dress of that subroutine as a parameter to the USR function. Since $1207 is 4615 in
decimal, the command X=USR(4615) causes Atari BASIC to call the subroutine at
$1207. (The value returned by that subroutine will then be stored in the BASIC
variable X — not in the 6502's X register. But that doesn’t concern us because the
Visible Monitor isn't designed to return a value to its caller.)

Using the PET 2001, you can invoke the Visible Monitor from BASIC in the im-
mediate mode with the following BASIC command:

SYS (4615)

When you press (RETURN), you'll see the Visible Monitor display, because SYS
(4615) causes BASIC to call the subroutine at address 4615 decimal, which is
$1207—the entry point for the Visible Monitor.

If and when you press “Q" to quit the Visible Monitor, the Visible Monitor will
return to its caller — PET BASIC. (The Visible Monitor doesn’t leave much room for
a PET BASIC program, since your BASIC program and its arrays, variables, etc
cannot require memory beyond $0FFF, but the Visible Monitor should work very
well with a small PET BASIC program. In any case, it's reassuring to have a new
program such as the Visible Monitor return to a familiar one such as the PET BASIC
interpreter.)

Once you have activated the Visible Monitor, you should see its display on the
screen. If you don't see such a display, then the Visible Monitor has not been entered
properly into your system's memory; perhaps you failed to enter the display code
properly.

If you do see the Visible Monitor display on the screen, press the space bar. The
display should change — specifically, the displayed address should increment, and
fields 1 and 2, immediately to the right of the displayed address, may also change.

If nothing changes when you press the space bar, then the display code prob-
ably works fine, but you failed to enter the UPDATE code properly.

If the space bar does change the display, then test out the other functions of the
Visible Monitor: press RETURN to decrement the selected address; press hexa-
decimal keys to select a different address; then select an address somewhere in screen
memory and place new data into that address. If you picked a place in display mem-
ory that is not cleared by the Visible Monitor (ie: a place not in the top five rows of
the screen), then you should be able to place arbitrary characters on the screen just
by using the Visible Monitor to store arbitrary values in the selected address.

If your Visible Monitor fails to perform properly, you may have entered it into
memory incorrectly. Compare the DATA statements you appended to the OBJECT

ENTERING THE SOFTWARE INTO YOUR SYSTEM 169

CODE LOADER with the DATA statements in the E Appendices. Remember: if
even 1 byte is entered incorrectly, then in all likelihood the Visible Monitor will fail

to function.

To extend the Visible Monitor as described in Chapter 12, store a $BO in ad-
dress $13D2. To disable the features described in Chapter 12, store a $10 in address
$13D2. Now you're really getting your hands on the machine, reaching into memory
and operating on the bytes, and with that kind of control, you can do almost
anything.

NOTE:

The author intends to provide the software in this book for sale on cassettes
compatible with the Apple II, Atari, Ohio Scientific, and PET computers. If you
prefer to load your software from cassette, rather than enter it in by hand, contact
the author through BYTE Books.

170 BEYOND GAMES

Appendices

Appendix Al:

Hexadecimal Conversion Table

HEX

0

1

2

3

4

S

6

7

8

9 A B C D

E

F

00

000

TMEHOOAW> OCOICOA BN

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240

1
17
33
49
65
81
97

113
129
145
161
177
193
209
225
241

2
18
34
50
66
82
98

114
130
146
162
178
194
210
226
242

3
19
35
51
67
83
99

115
131
147
163
179
195
211
227
243

4
20
36
52
68
84

100
116
132
148
164
180
196
212
228
244

5
21
37
53
69
85

101
117
133
149
165
181
197
213
229
245

6
22
38
54
70
86

102
118
134
150
166
182
198
214
230
246

7
23
39
55
71
87

103
119
135
151
167
183
199
215
231
247

8
24
40
56
72
88

104
120
136
152
168
184
200
216
232
248

9
25
41
57
73
89

105
121
137
153
169
185
201
217
233
249

10
26
42
58
74
90
106
122
138
154
170
186
202
218
234
250

11
27
43
59
75
91
107
123
139
155
171
187
203
219
235
251

12
28
44
60
76
92
108
124
140
156
172
188
204
220
236
252

13
29
45
61
77
93
109
125
141
157
173
189
205
221
237
253

14
30
46
62
78
94
110
126
142
158
174
190
206
222
238
254

15
31
47
63

95
111
127
143
158
175
191
207
223
239
255

256

512

768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840

4096

8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

17

Appendix A2:

ASCIl Character Codes

Code Char
00 NUL
01 SOH
02 STX
03 ETX
04 EOT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
oC FF
0D CR
OE SO
OF SI

10 DLE
11 DC1
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB
1B ESC
1C FS
1D GS
1E RS
1F Us

172 BEYOND GAMES

Code

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

Char

SP
!

"

l\ + P *zh§m*

-~

v 0N ULIR WL O

SV AT

Code

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
SE
SF

l>"‘/"“t\l'-<><§<C1'—l‘5/37<-1;o’fJ OZZCART=IOTHINT>E Q
o

Code

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

70

72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

Char

,

OB g —ATTIE e N O

|~ N X g LE Te AT

DEL

Appendix A3:

6502 Instruction Set — Mnemonic List

ADC
AND
ASL

BCC
BCS
BEQ
BIT

BMI
BML
BPL

BRK
BVC
BVS

CLC
CLD
CLI
CLV
CMP
CPX
CPY

DEC
DEX
DEY

EOR
INC

INX
INY

Add Memory to Accumulator with Carry
“AND" Memory with Accumulator
Shift Left One Bit (Memory or Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator
Branch on Result Minus

Branch on Result not Zero

Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Register X
Compare Memory and Register Y

Decrement Memory
Decrement Register X
Decrement Register Y

“Exclusive Or” Memory with Accumulator
Increment Memory

Increment Register X
Increment Register Y

173

MP
JSR

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Jump to New Location
Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Register X with Memory

Load Register Y with Memory

Shift Right One Bit (Memory or Accumulator)

No Operation
“OR” Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Register X in Memory

Store Register Y in Memory

Transfer Accumulator to Register X
Transfer Accumulator to Register Y
Transfer Stack Pointer to Register X
Transfer Register X to Accumulator
Transfer Register X to Stack Pointer
Transfer Register Y to Accumulator

174 BEYOND GAMES

Appendix A4:

6502 Instruction Set — Opcode

00 — BRK

01 — ORA — (Indirect,X)
02 — Future Expansion

03 — Future Expansion

04 — Future Expansion

05 — ORA — Zero Page .
06 — ASL — Zero Page
07 — Future Expansion

08 — PHP

09 — ORA — Immediate
0A — ASL — Accumulator
0B — Future Expansion
0C — Future Expansion
0D — ORA — Absolute
0E — ASL — Absolute

OF — Future Expansion

10 — BPL

11 — ORA — (Indirect),Y
12 — Future Expansion

13 — Future Expansion

14 — Future Expansion

15 — ORA — Zero Page, X
16 — ASL — Zero Page, X
17 — Future Expansion

18 — CLC

19 — ORA — Absolute,Y
1A — Future Expansion

1B — Future Expansion

1C — Future Expansion

1D — ORA — Absolute, X
1E — Future Expansion

1F — Future Expansion

20 — JSR

21 — AND — (Indirect,X)
22 — Future Expansion

23 — Future Expansion

24 — Bit — Zero Page

25 — AND — Zero Page
26 — ROL — Zero Page
27 — Future Expansion

28 — PLP

29 — AND — Immediate
2A — ROL — Accumulator
2B — Future Expansion
2C — BIT — Absolute
2D — AND — Absolute
2E — ROL — Absolute
2F — Future Expansion

175

30 — BMI

31 — AND — (Indirect),Y
32 - Future Expansion

33 — Future Expansion

34 — Future Expansion

35 — AND — Zero Page, X
36 — ROL — Zero Page, X
37 — Future Expansion

38 — SEC

39 — AND — Absolute,Y
3A — Future Expansion
3B — Future Expansion
3C — Future Expansion
3D — AND — Absolute, X
3F — Future Expansion

40 — RTI

41 — EOR — (Indirect,X)
42 — Future Expansion
43 — Future Expansion
44 — Future Expansion
45 — EOR — Zero Page
46 — LSR — Zero Page
47 — Future Expansion
48 — PHA

49 — EOR — Immediate
4A — LSR — Accumulator
4B -— Future Expansion
4C — JMP — Absolute
4D — EOR — Absolute
4E — LSR — Absolute
4F — Future Expansion

50 — BVC

51 — EOR — (Indirect),Y
52 — Future Expansion

53 — Future Expansion

54 — Future Expansion

55 — EOR — Zero Page, X
56 — Zero Page, X

57 — Future Expansion

176 BEYOND GAMES

58 — CLI

59 — EOR — Absolute,Y
5A — Future Expansion
5B — Future Expansion
5C — Future Expansion
5D — EOR — Absolute, X
5E — LSR — Absolute, X
SF — Future Expansion

60 — RTS

61 — ADC — (Indirect,X)
62 — Future Expansion
63 — Future Expansion

64 — Future Expansion

65 — ADC — Zero Page
66 — ROR — Zero Page
57 — Future Expansion

68 —PLA

69 — ADC — Immediate
6A — ROR — Accumulator
6B — Future Expansion
6C — JMP — Indirect

6D — ADC — Absolute
6E — ROR — Absolute
6F — Future Expansion

70 — BVS

71 — ADC — (Indirect),Y
72 — Future Expansion

73 — Future Expansion

74 — Future Expansion

75 — ADC — Zero Page, X
76 — ROR — Zero Page, X
77 — Future Expansion

78 — SEI

79 — ADC Absolute,Y

7A — Future Expansion

7B — Future Expansion

7C — Future Expansion
7D — ADC — Absolute, X
7E — ROR — Absolute, X
7F — Future Expansion

80 — Future Expansion
81 — STA — (Indirect,X)
. 82 — Future Expansion
83 — Future Expansion
84 — STY — Zero Page
85 — STA — Zero Page
86 — STX — Zero Page
87 — Future Expansion
88 — DEY
89 — Future Expansion
8A — TXA
8B — Future Expansion
8C — STY - Absolute
8D — STA — Absolute
8E — STX — Absolute
8F — Future Expansion

90 — BCC

91 — STA — (Indirect),Y
92 — Future Expansion

93 — Future Expansion

94 — STY — Zero Page, X
95 — STA — Zero Page, X
96 — STX — Zero Page,Y
97 — Future Expansion

98 — TYA

99 — STA — Absolute,Y
9A — TXS

9B — Future Expansion
9C — Future Expansion
9D — STA — Absolute, X
9E — Future Expansion

9F — Future Expansion

AQ — LDY — Immediate
Al — LDA — (Indirect,X)
A2 — LDX — Immediate
A3 -~ Future Expansion
A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 — Future Expansion

A8 — TAY

A9 — LDA — Immediate
AA — TAX

AB — Future Expansion
AC — LDY — Absolute
AD — LDA — Absolute
AE — LDX — Absolute

..AF — Future Expansion

Bo — BCS

B1 — LDA — (Indirect),Y
B2 — Future Expansion

B3 —- Future Expansion

B4 — LDY — Zero Page, X
B5 - LDA — Zero Page,X
B6 — LDX — Zero Page,Y
B7 — Future Expansion

B8 — CLV
B9 — LDA — Absolute,Y
BA — TSX

BB — Future Expansion
BC — LDY — Absolute, X
BD — LDA — Absolute, X
BE — LDX — Absolute,Y
BF — Future Expansion

C0 — CPY — Immediate
C1 — CMP — (Indirect,X)
C2 — Future Expansion
C3 — Future Expansion
C4 — CPY — Zero Page
C5 — CMP — Zero Page
C6 — DEC — Zero Page
C7 — Future Expansion

C8 — INY

C9 — CMP — Immediate

CA — DEX

CB — Future Expansion e
CC — CPY — Absolute L

CD — CMP — Absolute
CE — DEC — Absolute
CF — Future Expansion

177

D0 — BNE

D1 — CMP — (Indirect),Y
D2 — Future Expansion

D3 — Future Expansion
D4 — Future Expansion

D5 — CMP — Zero Page, X
D6 — DEC — Zero Page,X
D7 — Future Expansion
D8 — CLD

D9 — CMP — Absolute,Y
DA — Future Expansion
DB — Future Expansion
DC — Future Expansion
DD — CMP — Absolute, X
DE — DEC — Absolute, X
DF — Future Expansion

E0 — CPX — Immediate
E1 — SEC — (Indirect,X)
E2 — Future Expansion
E3 — Future Expansion
E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — Zero Page

E7 — Future Expansion

178 BEYOND GAMES

E8 — INX

E9 — SBC — Immediate
EA — NOP

EB — Future Expansion
EC — CPX — Absolute
ED — SBC — Absolute
EE — INC — Absolute
EF — Future Expansion

FO — BEQ

F1 — SBC — (Indirect),Y
F2 — Future Expansion

F3 — Future Expansion

F4 — Future Expansion

F5 — SBC — Zero Page, X
F6 — INC — Zero Page, X
F7 — Future Expansion

F8 — SED

F9 — SBC — Absolute,Y
FA — Future Expansion
FB — Future Expansion
FC — Future Expansion
FD — SBC — Absolute, X
FE — INC — Absolute, X
FF — Future Expansion

Appendix A5:

Instruction Execution TIMES ¢ dock cydes)

o
&

g x>~ X > X > g
S £ B B b o g g 3 T @
E 8 & & & 3 %2 2 g £ 8 g 3
& § g 2 g8 2 2 2 & 5 % B 2
< Ed 3 < <22 EESE S

ADC . 2 3 4 4 4 4 6 5*

AND . 2 3 4 4 4 4 6 5*

ASL 2 5 6 6 7 :

BCC 2%+

BCS : : 2%+

BEQ . . 2%

BIT 3 4 .

BMI 2%+

BNE 2%+

BPL 2%+

BRK :

BVC 2%*

BVS . 2%*

CLC 2

CLD 2

CLL 2

CLV 2 . .

CMP . 2 3 4 AR 6 5*

CPX . 2 3 4

CPY . 2 3 . . 4 .

DEC 5 6 6 7 :

DEX 2

DEY C. 2 .

EOR . 2 3 4 4 4 g 6 5

179

Absolute Indirect

Accumulator
Immediate
Zero Page
Zero Page, X
Zero Page, Y
Absolute, X
Absolute, Y
(Indirect), X
(Indirect), Y

Absolute
Implied
Relative

w
(=)}
o
|

INC
INX
INY . . ' '
MP . . o .
JSR '

LDA .
LDX
LDY .
LSR 2 ., . . .
NOP 2 . . .
ORA ., 2 3 4 4* . 6 5*
PHA

PHP
PLA '
PLP
ROL
ROR
RIT
RTS 6 . . .
SBC . 2 3 4 . 4 4% 4 . 6 5*
SEC 2 . . .
SED , 2 .,

SEI . . . , oo e . . . '

STA . . 3 4 . .
STX* ., . '
STY** , . 3 4 . 4
TAX
TAY . . . , '
TSX . .
TXA

XS . .

TYA .

-
.
-

[S

4* 4% . 6 5%
4*

N

o~ .
N
[N N TN N

o
6,] Ut W W W
o -
o =N
N} X
*
AN

(3
w»
o
o
3
o -

[4%]

e

NN
n
[4)]
o
o

[SO I ST SR (ST S NS

* Add one cycle if indexing across page boundary
** Add one cycle if branch is taken, Add one additional if branching operation

crosses page boundary

180 BEYOND GAMES

Appendix A6:

6502 Opcodes by Mnemonic and
Addressing Mode

Addressing Modes
o
by >
< > B < > Mmoo
BB E 5 2 H BB o= 2 9 9
] % O @m =2 =2o/A" E
O O O 0 g OO B 8 B < O O O
2889 g&28 2 48 ¢& 8
< € < T &2 8 &2 &2 & =2 N N KN
ADC eD 7D 79 , 69 , 61 71 65 75
AND 2D 3D 39 . 29 . 21 31 25 35 ,
ASL OE 1E 0A . . 06 16 ,
BCC . , 9 ,
BCS BO . . '
BEQ . . , . , . FO . . ,
BIT 2C . . , . 24
BMI , , . , 30 ., .
BNE , . Do .
BPL , 10
BRK . 00 ., . . . ,
BVC , 50 .
BVS . . . 70
CLC . e 3 18 . . ’
CLD » » . . [D8 3 . [.]
CLI . . . , , 58 . .

181

Addressing Modes

5
< = 2og X > w é :
s EESE g EEelld
2 2 2 5 A E 2 8 3 B & & o
o o5 BB S g &g 2 < 999
m M M &) 2 S 2 i'u'] % L% r.%
2 2 2 2 22 2 &2 £ 2 N N R
Mnemonics =========s- - sS=sSS==oo=SSSS======
CLV B8
CMP CD DD D9 . Co . . C1 D1 . Cs5 Ds
CPX EC . . . Eo E4
CPrY cC . . . co C4
DEC CE DE Cé Do
DEX CA .
DEY 88
EOR 4D 5D 59 . 49 . . 41 51 . 45 55
INC EE FE E6 Fé
INX E8
INY cs .
JMP 4C 6C
JSR 20
LDA AD BD B9 . A9 . . Al Bl . A5 BS5
LDX AE . BE . A2 A6 .
LDY AC BC . . A0 A4 B4
LSR 4E S5E . 4A 46 56
NOP EA
ORA oD 1ID 19 . 09 . . 01 11 . 05 15
PHA 48
PHP 08
PLA 68
PLP 28
ROL -~ 2 3 . 2A 26 36
ROR 6E 7E . 6A 66 76
RTI 40 ‘

182 BEYOND GAMES

Addressing Modes

ABSOLUTE

Mnemonics

RTS
SBC

SEC
SED
SEI

STA

STX
STY
TAX
TAY

TSX
TXA
TXS
TYA

ED

8D
8E
8C

o~

2
XX oo™
oo
= = D
DDE
N T
o o 3
vy U
m m U
< < <
FD Fo
9D 99

IMMEDIATE

-IMPLIED

INDIRECT

AA .

A8

BA
8A
9A

INDIRECT, X

81

INDIRECT,Y

91

RELATIVE

ZERO PAGE

85
86
84

ZERO PAGE,X

95

94

ZERO PAGE)Y

183

Appendix Bl:
The Ohio Scientific Challenger |-P

The Ohio Scientific Challenger I-P is the simplest of the systems considered in
this book. Its screen is mapped in the manner described in Chapter 5: the lowest
screen address is in the upper left corner, and the screen addresses increase uniform-
ly as you move to the right and down the screen. Any ASCII character stored in
screen memory will be displayed properly on the video screen; it is not necessary to
replace the ASCII character with a system-specific display code. Therefore, the
system data block may be initialized as shown in Appendices C13 and E12.

Incidentally, the OSI C-IP’s screen TVT subroutine at $BF2D stores the relative
location of the cursor in $0200. Modify $0200 and you change the next location at
which a character will be printed to the screen.

If you have an Ohio Scientific BASIC-in-ROM system other than the
Challenger I-P, it may have different character input/output routines. If so, examine
the following locations:

BASIN $FFEB General character-input routine for OSI
BASIC-in-ROM.

BASOUT $FFEE General character-output routine for
OSI BASIC-in-ROM.

For example, in the OSI C-IP you can get a character from the keyboard by call-
ing $FEED, or you may call OSI's general character-input routine at $FFEB. This
routine gets a character from the keyboard unless the SAVE flag is set, in which case
it gets a character from the cassette input port. Similarly, in the OSI C-IP you can
print a character to the screen by calling $BF2D, or send a character to the cassette
output port by calling $FCB1. Or, you can simply call OSI’s general character-
output routine at $FFEE, which outputs the accumulator to the screen and, if the
SAVE flag is set, echoes to the serial port as well.

Thus, even if you don't know the addresses of your OSI system’s specific I/0O
routines, you can set ROMKEY =$FFEB and ROMTVT =$FFEE. When you RESET

185

-

f

* your system, the Ohio Scientific Operating System will automatically “hook” those
routines to your keyboard for input and to your screen for output.

Setting the Top of Memory

If you wish to load object code using the BASIC OBJECT CODE LOADER (see
Chapter 13) you must first set the top of memory available to your BASIC inter-
preter to $OFFF. Do this as part of cold-starting BASIC. To cold-start BASIC, turn
on your OSI computer, press the (BREAK) key, and then press ‘C’. The screen will
prompt, “Memory Size?” Type “4095” and then press (RETURN). Now BASIC will
use the lowest 4K of RAM, leaving memory from $1000 and up available to
machine-language programs.

With the top of memory set to $0FFF, you may enter and RUN the BASIC pro-
grams that load object code into your computer’s memory.

Calling Machine-Language Code from BASIC

To call a machine-language subroutine from BASIC, first set the pointer at
$000B, 000C so it points to the subroutine, and then call that subroutine with
BASIC’s USR function, either in the immediate mode or from within a BASIC pro-
gram. For example, let's say you wish to call the Visible Monitor from BASIC. The
Visible Monitor’s entry point is at $1207, so we must make $000B,000C point to

- $1207. This means storing 07 in $000B, and storing $12 (decimal 18) in $000C. The
following line will do that for us:

POKE 11,7:POKE 12,18
Now we may invoke the Visible Monitor with the line:
X = USR(X)

or with any other line that uses the USR function.

Note that the USR function does not set a BASIC variable equal to the contents
of some register in the 6502; in fact, the line X = USR(X) will not change the value of
the BASIC variable X at all. Thus, the USR function lets you activate any desired
machine-language subroutine, but it doesn't let you capture a value returned by such

186 BEYOND GAMES

a subroutine. If you want a machine-language subroutine to return some value
which you can then use in a BASIC program, you'll have to make the machine-
language subroutine store its value or values somewhere in memory, and then have
the BASIC program PEEK that memory location after it has called the machine-
language subroutine via the USR function. -

187

Appendix B2:
The PET 2001

Display Memory

The PET screen is mapped conventionally, with the HOME address at $8000
(32,768 decimal). It has 25 rows, each consisting of 40 characters. The address of
each screen location is 40 ($28) greater than the address of the screen location direct-
ly above it. Thus, the screen parameters for the PET 2001 are:

HOME .WORD $8000,

ROWINC .BYTE $28

TVCOLS .BYTE 39 (We count columns from zero.)
TVROWS .BYTE 24 (We count rows from zero.)
PET Character Set

However, although the PET screen buffer is mapped conventionally, you can-
not simply store an ASCII character in screen memory if you wish to see that ASCII
character on the screen. The PET character generator introduces a few wrinkles and
you must compensate carefully if you are to display ASCII characters properly on
the screen.

For example, if you store $31 (the code for an ASCII “1”) in the PET's display
memory, then you will see a “1” displayed on the screen. So far, so good. The same
is true for all ASCII digits and for some ASCII punctuation marks. But if you store
$45 (ASCII code for an upper case “E”) in screen memory, then you won't see an “E”
on the screen: you'll see éither a lowercase “e” or else a horizontal line segment much
longer than a hyphen. What's happening?

The PET 2001 features a memory location, $E84C (59468) which has a special
effect on the video-display circuitry. The value stored in that address selects for the
video display one character set or another.

188 BEYOND GAMES

To see how the choice of character set affects the display, enter the following
BASIC program into your PET:

100 REM DISPLAY PET CHARACTER SET
110 REM IN 16 BY 16 MATRIX

120 REM

130 HOME=232768

140 CHAR=0

150 FOR ROW=0TO 15

160 FOR COL=0TO 15

170 POKE (HOME+COL)+ (40" ROW),CHAR
180 CHAR=CHAR+1

190 NEXT COL

200 NEXT ROW

210 END

Before running this program, clear the screen by holding down the PET’s SHIFT
key at the same time that you depress the CLR/HOME key. When the screen is
clear, use the CRSR SOUTH key to move the cursor down seventeen rows. Then
type RUN and press RETURN. You'll see one PET character set appear ina 16 by 16
matrix in the upper left portion of your PET’s screen.

What you’'ll see on your screen will look like table B2.1 (without the labeled
axes). ‘

Table B2.1: The PET character set.

RIGHT NYBBLE OF CHARACTER
-0-1-2-3-4-5-6~-7-8-9-A—-B-C—-D—-E—F

LEFT NYBBLE

OF CHARACTER

0— @ ABCDETFGHTI] LMNO
1— PQRSTUVWXYZI[\N 11~
2— " # % % & () * ro= /
3— 01 2 3 4 5 6 7 8 9 : < = > 1
4— ~—a b ¢ d e f g h i j I m n o
5 P 9 r s t u VvV W X ¥V Z o e e
6— o e e e
- - —_— e
8— @ ABCDETFGHTI] LMNO
9— PQRSTUVWXYZ [\] t -
A— " # % % & ' () * o= ./
B— 0 1 2 3 4 5 6 7 8 9 : < = > 1
C— — a b cd e f g h i j Il m n o
D— P g r s t uvwxy z _ _ . __ _
E~ o e o o e e
F~ o o e

189

In this chart, special graphic characters are indicated by an underline. Look at
your PET screen to see those special graphics in all their glorious detail.

Note that the characters for $80 thru $FF are the same as for $00 thru $7F, but in
reverse intensity. The low 128 characters ($00 thru $7F) are “normal” — that is,
white characters on a dark background; whereas the high 128 characters ($80 thru
$FF) are in reverse video — dark characters in a white background. An “A” in nor-
mal intensity may be displayed by storing an $01 somewhere in the screen memory;
a reverse intensity “A” may be displayed by storing an $81 somewhere in screen
memory. From this pattern we can derive a handy corollary: to reverse the intensity
of any character on the screen, simply reverse its bit 7. You don't even have to know
what the character represents; just toggle bit 7 and you change its intensity.

The chart in figure B2.1 (and on your PET screen) shows one complete
character set because the BASIC program stores every 8-bit value, from $00 thru
$FF, into the screen buffer. But I mentioned two character sets. What must you do to
see the second character set?

If the cursor is within three rows of the bottom of the screen, move it up so that
it is at least three rows above the bottom of the screen. This will insure that you
don’t scroll part of the character set up off the screen when you execute the following
BASIC command in the immediate mode:

POKE 59468,12

Did that change the display? If not, then execute the following BASIC com-
mand in the immediate mode (again being sure that the cursor is at least three rows
from the bottom of the screen): ’

POKE 59468,14

Depending on the value stored in 59468 ($E84C), one or another character set
will be displayed. The values of the bytes stored in screen memory will not change
when you change the contents of $E84C, but in some cases the displayed characters
will change. In the ranges 00 thru $3F and $80 thru $BF, the two character sets are
identical. But in the ranges $40 thru $7F and $CO thru $FF, they differ.

Both character sets include numbers, uppercase letters, and certain punctuation
marks; but only one character set includes lowercase letters and the remaining punc-
tuation marks. The second character set lacks lowercase letters and these punctua-
tion marks, offering instead a set of special graphics characters, including playing-
card suits. POKE 59468,14 to select the former character set (thereby making possi-
ble the display of all printable ASCII characters); POKE 59468,12 to select the latter
character set (thereby making possible the display of the gaming graphics).

190 BEYOND GAMES

FIXCHR

Note that neither character set corresponds directly to ASCIL. If you have an
ASCII character in the accumulator and you want to display the appropriate graphic
character on the screen, you must first call FIXCHR (as TV.PUT does, in Chapter 5).
When an ASCII character is passed in the accumulator, FIXCHR must return in the
accumulator the proper PET display code for that character. FIXCHR's caller may
then store this display code in memory, thereby placing on the screen an appropriate

image of the original ASCII character.

How will FIXCHR work? By examining the PET character set and comparing it
to Appendix A2, ASCII codes, we can see a solution in the form of the following

algorithm:

® If a character is in the range $40 thru $5F, subtract $40 and return.

® If a character is in the range $20 thru $3F, return.

@ If a character is in the range $60 thru $7A, store a decimal 14 in 59468 to select
the character set that has lower case letters; and return.

@ All other input characters are either ASCII control codes, for which there are
no agreed-upon graphics, or else PET special graphics characters, so just

return.

Examine the tables yourself to see if this algorithm will work.

FIXCHR

LOWERC

FIXEND

AND #$7F

SEC
CMP #%40
BCC FIXEND

CMP #$60
BCS LOWERC

SBC #$40
RTS
LDX #14

STX 59468
RTS

FIXCHR

Clear bit 7, so the character will be in
the legal ASCII range.

Prepare to compare.

If it's less than $40, return.

Okay. The character is greater than $40.
Is it greater than $5F?

If so, handle it as lowercase.

Okay. The character is in the range
$40-%5F.

Subtract $40 for proper display code.

Since we have a lowercase letter, let's
select the character set that

has lowercase letters.

Return, bearing PET display code for
character originally in accumulator.

191

Call FIXCHR with an ASCII character in the accumulator. FIXCHR will return
with the corresponding PET display code in the accumulator. When it returns, its
caller may store the accumulator anywhere in screen memory, thus displaying an
image of the original ASCII character.

PET Keyboard Input Routine

To get an ASCII character from the PET keyboard, call the following
subroutine:

PETKEY JSR $FFE4 Call PET ROM key scan routine,
CMP #0 Zero means no key.
BEQ PETKEY If no key, scan again.

A new key is in the accumulator. If the
shift key was down, bit 7 is set.

AND #$7F So clear bit 7, just to be sure we've got
a legal ASCII character.

RTS Return with ASCII character in the ac-
cumulator.

This subroutine yields the uppercase ASCII code for any letter key that you
depress, and the proper ASCII code for any digit key or punctuation key.

PET TVT Routine

To print an ASCII character to the screen, call $FFD2, a PET ROM routine I
will refer to as PETTVT.

Any printable ASCII character passed to $FFD2 (or, apparently, to $E3EA or
$F230) will be printed properly to the screen at the PET’s current TVT screen loca-
tion. You may change the PET’s current TVT screen location (which is not the same
as the current location used by the screen utilities in Chapter 5) by calling PETTVT
with the accumulator holding any of the control codes from Table B2.1.

192 BEYOND GAMES

Table B2.1: Control codes that affect the next character to be printed by PETTVT.

Character Name Code Function

CURSOR NORTH $91 Move current location up by one row,

CURSOR EAST $1D Move current location one column to the right.

CURSOR SOUTH $11 Move current location down by: one row.

CURSOR WEST $9D Move current location left by one column,

INSERT $94 Move current character, and all characters to its
right, one column to the right.

DELETE $14 Move current character, and all characters to its
right, one column to the left.

HOME $13 Set current location to upper left of screen,
CLEAR $93 Set current location to the upper left corner and
clear the screen.

REVERSE $12 Select reverse video for following characters.
REVERSE-OFF $92 Select normal video mode for following
characters.

These control codes may be passed directly to PETTVT, or they may be in-
cluded within a string of characters to be printed by “PRINT:"” or “PR.MSG.” For
example, if you wish to clear the screen before printing a message, just put the
CLEAR character ($93) at the beginning of your message string, immediately follow-
ing the STX. The message-printing subroutine will get the CLEAR character and
pass it to PR.CHR, which, in turn, will pass it through the ROMTVT vector on to
the PETTVT routine, The PETTVT routine will then clear the screen and set the cur-
rent location to the upper left corner of the screen.

The next character in the string will then be printed in the upper left corner of a
clear screen. If, instead of printing your message at the top row of a clear screen,
you'd prefer to print it in the fifth row of a clear screen, just follow the CLEAR
character with four CURSOR-SOUTH characters ($11, $11, $11, $11), and follow
the four cursor-south characters with the text of your message. Following the text of
your message, of course, you must include an ETX ($FE).

You might never use the PETTVT control codes, but it’s good to know they're
available, should you ever want your PET's display screen to perform as something
more than a glass teletype.

System Data Block

To run on a PET 2001, the software in this book requires the system data block
shown in Appendices C14 and E13.

183

Setting the Top of Memory

Before you can use the BASIC OBJECT CODE LOADER (presented in Chapter
12) to load object code into your PET’s memory, you must insure that your PET's
BASIC interpreter leaves undisturbed all memory above $0FFF (4095 decimal). The
PET BASIC interpreter will do as we wish if we set its top-of-memory pointer ap-
propriately. The top-of-memory pointer specifies the highest address that may be
used for the storage of BASIC program lines, variables, and strings. Memory above
that address is off-limits to BASIC.

As you may know, there is more than one version of the PET 2001 by Com-
modore. Some PET's have software in “old” ROMS (REV 2 ROMS), and others
have software in “new” ROMS (REV 3 ROMS). As far as the software in this book is
concerned, old ROM PETS and new ROM PETS are the same, since the ROM
routines we care about are accessible from the same addresses in both old and new
ROM PETS. Therefore, until now I haven’t even mentioned that the PET 2001
comes in two flavors. But now you must discover whether you have an old ROM or
a new ROM PET, because otherwise you won't be able to set the top of memory.

Old ROM and new ROM PETS each contain a machine-language subroutine to
clear the screen, but in new ROM PETS that subroutine is at $£229 (57897 decimal),
and in old ROM PETS that subroutine is as $E236 (57910 decimal). To see what
ROMS are in your PET, use the PET’s screen editor to place some characters on the
screen, and then type:

SYS (57897)

and press (RETURN). Does the screen clear? If so, you've got a new ROM PET. If
not, turn off your PET, turn it on, place some characters on the screen, and then

type:

SYS (57910)

and press (RETURN). Does the screen clear? If so, you've got an old ROM PET. 1f
not, then your PET contains neither Rev 2 ROMS nor Rev 3 ROMS, and you'll have
to consult your system’s documentation carefully to discover the address of the top-
of-memory pointer.

On old ROM PETS, the top-of-memory pointer is at 134 and 135 ($86,87). On
new ROM PETS, the top-of-memory pointer is at 52 and 53 ($34,35). Regardless of
the location of the top-of-memory pointer, we want to set the low byte of that
pointer equal to $FF (255 decimal), and the high byte of that pointer equal to $0F (15
decimal), so that the pointer itself points to $0FFF. That will leave memory from

194 BEYOND GAMES

$1000 and up available to machine-language programs.
Thus, we set the top of memory on an old ROM PET with:

POKE 134,255:POKE 135,15

Similarly, we set the top of memory on a new ROM PET with:

POKE 34,255:POKE 35,15

Once you have set the top of memory available to your PET’s BASIC inter-
preter, you may enter the BASIC OBJECT CODE LOADER and the DATA
statements from Appendices E1 thru E11, and from Appendix E13. Remember to set
the top of memory not only when typing in these DATA statements, but when
RUNning the OBJECT CODE LOADKER, as well.

195

Appendix B3:
The Apple |l

Apple Display

The display memory of the Apple II is mapped in a manner that is much more
complex than the Ohio Scientific or PET computers. On each of these other systems,
only one portion of memory is mapped to the screen. The screen cannot display the
contents of any other bank of memory (unless, of course, you copy the contents of
another bank of memory into the display memory). But the Apple Il may display the
contents of any of four banks of memory: Low-Resolution Graphics and Text Page
1, Low-Resolution Graphics and Text Page 2, High-Resolution Graphics Page 1, and
High-Resolution Graphics Page 2. Table B3.1 summarizes the locations of these
pages in memory.

Table B3.1: Banks of display memory in the Apple IL.

Hexadecimal Decimal
Low-Resolution Graphics
and Text Page 1: $0400-$07FF 1024-2043
Low-Resolution Graphics
and Text Page 2: $0800-$0BFF 2048-3071
Hi-Resolution Graphics
Page 1: $2000-$3FFF 8192-16383
Hi-Resolution Graphics
Page 2: $4000-$5FFF 16384-24575

Note that each of these display pages takes up much more than one hexadecimal
page (256 bytes). A display page is simply an area of any size memory, whose con-
tents may be displayed on the screen. Each low-res display page occupies four hexa-
decimal pages, and each hi-res display page occupies 32 hexadecimal pages. Why are
the hi-res display pages bigger than the low-res display pages? Hi-res means high-
resolution, and higher resolution requires more information.

196 BEYOND GAMES

How do you make the video screen show the contents of a given display page?
You need only store a zero in a particular address. Certain addresses in the Apple II
signal the video-display circuitry whenever data are written to them. The video-
display circuitry responds to these signals by displaying the contents of a given bank
of memory. These special addresses, or display selectors, are given in Table B3.2.

Table B3.2: Addresses that affect the APPLE II Display.

Hexadecimal Decimal Label Purpose of Address

$C050 —16304 TXTCLR Store a 0 here to set graphics
mode.

$C051 —16303 TXTSET Store a 0 here to set text mode.

$C052 —16302 MIXCLR Store a 0 here to set bottom
four lines to graphics.

$C053 —16301 MIXSET Store a O here to select text/
graphics mix (bottom four lines
text).

$C055 —16299 HISCR Store a 0 here to select Page 2.

$C056 —16298 LORES Store a 0 here to select low-
resolution graphics and text
page.

$C057 —16297 HIRES Store a 0 here to select high-

resolution graphics.

Space limitations prohibit a discussion in this book of the power of high-
resolution graphics. The Apple II documentation, however, provides an excellent
step-by-step guide to the design, display, saving, and loading of high-resolution im-
ages.] must stress, however, that the software in this book expects the host system
to have low-resolution graphics, so you'd better tell your Apple II to have low-
resolution graphics. The software in this book uses the Apple’s low-resolution
graphics with text page 1 as the screen memory. To select this display page, simply
press the RESET button on your Apple. If, on the other hand, you wish to select this
display page under software control, you can do it by calling the subroutine
LORES1:

LORES1 PHP Save processor flags.
PHA Save accumulator.
LDA #0 Store a 0 in
STA LOWSCR LOWSCR to select Page 1,
STA LORES and in LORES to select low-resolution
graphics.
PLA Restore accumulator.
PLP Restore processor flags.
RTS Return to caller.

197

This subroutine will select low-resolution graphics and text page 1. It preserves
all flags and registers, and is completely relocatable.

Even when you've configured your Apple II to low-resolution graphics, your
job isn't done. The low-res display of the Apple Il is mapped in an unusual manner.
For any other system you can assume that the address of a given location on the
screen is simply the address of the location above it, plus some row increment. On
the Apple II this is not always true. See Table B3.3, Apple Il low-res display memory
map.

Table B3.3: Apple Il low-resolution display.

Page 1

Row Address of Address of
Number Leftmost Column Rightmost Column
$00 $400 $427
$01 $480 $4A7
$02 $500 $527
%03 $580 $5A7
$04 $600 $627
$05 $680 $6A7
$06 $700 $727
$07 $780 $7A7
$08 $428 $44F
$09 $4A8 $4CF
$0A $528 $54F
$0B $5A8 $sCF
$0C $628 $64F
$0D $6A8 $6CF
$0E $728 $74F
$OF $7A8 $7CF
$10 $450 $477
$11 $4D0 $4F7
$12 $550 $577
$13 $sD0 $SF7
$14 $650 $677
$15 $6D0 $6F7
$16 $750 $777
$17 $7D0 $7F7

198 BEYOND GAMES

Page 2

Row Address of Address of
Number Leftmost Column Rightmost Column
$00 $800 $827
$01 $880 $8A7
$02 $900 o $927
$03 $980 $9A7
$04 $A00 = $A27
$05 $A80 $AA7
$06 $B0O $B27
$07 $B80 $BA7
$08 $828 $84F
$09 $8AS8 $8CF
$0A $928 $94F
$0B $9A8 $9CF
$0C $A28 $A4F
%0D $AAS $ACF
$0E $B28 $B4F
$OF $BAS $BCF
$10 $850 $877
$11 $8D0 $8F7
$12 $950 $977
$13 $9D0 $9F7
$14 $A50 $A77
$15 $ADO SAF7
$16 $Bs0 $B77
$17 $BDO $BF7

Note that the display addresses do not increase uniformly as we move down,
row-by-row, through low-res display page 1 or 2. The addresses increase uniformly
from row 0 thru row 7, but from row 7 to row 8 the display addresses do not in-
crease; they decrease! Then they increase uniformly through line $0F (15 decimal),
but from line $0F to line $10 (15 to 16 decimal), the display address plummets again.
Then from row $10 to row $17 (16 thru 23) the display addresses again increase
uniformly.

If you'd like to take a visual tour of the Apple II's low-res display memory, run
the BASIC program in listing B3.1. This program will simply poke a blank into each
address in low-res display page 1, starting at the lowest address and moving to the
highest address. You'll see that the screen does not fill with blanks in a contiguous
manner, but follows a pattern of three interleaved parts.

199

Listing B3.1: APPLE Il low-resolution display, memory-mapper program.

100 REM APPLE II LOW-RESOLUTION DISPLAY, MEMORY-MAPPER

105 REM
108 REM BY KEN SKIER
110 REM

120 FIRST =1024: REM START OF LOW-RESOLUTION PAGE 1.
130 LAST=2043: REM END OF LOW-RESOLUTION PAGE 1.

140 CHAR=32: REM CHARACTER TO BE POKED INTO SCREEN
150 REM WILL BE A WHITE BLANK.

160 REM

170 FOR X=FIRST TO LAST

175 REM FOR EACH ADDRESS IN LOW-RESOLUTION PAGE 1.
180 POKE X,CHAR

185 REM POKE A WHITE BLANK. THEN,

190 GOSUB 1000: REM WAIT A MOMENT...

200 NEXT X: REM BEFORE POKING NEXT ADDRESS.

210 END

220 REM

230 REM

1000 FOR WAIT=0 TO 100

1005 REM THIS IS A WAIT SUBROUTINE.

1010 NEXT WAIT: REM IT SLOWS DOWN PROGRAM SO YOU
1020 RETURN: REM CAN FOLLOW THE ACTION.

Must we now write a whole new set of display procedures to accommodate the
unusual mapping of the Apple II low-res display pages? We could. But the screen
utilities presented in Chapter 5 will work for the Apple II if we think of the Apple
low-res screen as three separate screens: the top eight rows are one screen, the
middle eight rows are another screen, and the bottom eight rows are a third screen.
Each of these “screens” has a set of screen parameters.

The sceen utilities in this book will work fine if you limit their scope to a given
third of the screen. Use TVTOXY only to set a relative screen position within the
third of the screen that you have selected. Use the screen utilities only for the top
third of the screen. The middle and bottom thirds of the screen may still be used by
the PRINT utilities.

To limit the screen utilities to the top third of low-res display page 1, initialize
the screen parameters as follows:

SCREEN .WORD $0400
TVCOLS .BYTE $27
TVROWS .BYTE $07
ROWINC .BYTE $80

200 BEYOND GAMES

If you want to keep text from scrolling into the upper third of the screen, store
$08 in address $0022. (In BASIC you may do this with the command POKE 34,8.)

There’s one more quirk to the Apple display. If you store an ASCII character in
display memory, then you will display a blinking or inverse version of the character.
Setting bit 7 in an ASCII character code will cause that character to be displayed in
normal mode (a white character on a black background), rather than as a black
character on a white background or as a blinking character. '

You may experiment with this feature of the Apple II by using the Apple II
monitor to store $41 (an ASCII “A”) in a location in low-res display page 1. You'll
see a blinking “A.” Now store $C1 in-a location in low-res display page 1. You'll see
a normal “A.” Why? Because $C1 is $41 with bit 7 set. To understand what’s hap-
pening here, look at the Apple II's character set given in Table B3.4.

Table B3.4: The Apple II character set.

RIGHT NYBBLE OF CHARACTER
—0—-1-2-3-4-5-6—-7—-8-9—-A—-B—-C—-D—E—F

LEFT NYBBLE

OF CHARACTER

0— @ ABCDET FGHTIJ]KILMNDPO
1-—- PQRSTUVWXY Z [\] -
2—- " 4% % °) * + , = /

3— 01 2 3 45 6 7 8 9 : ; < = >
4— @ ABCDETFGHTITJ]KTLMMNDO
5— PQRSTUVWXY Z [\ I -
6— L " # % % ' () *+ , = . /

7— 01 2 3 4 5 6 7 8 9 : ; < = >27
8— @ ABCDETFGHTIJ]KLMNDO
9— PQRSTUVWXY zZ [\] -
A— S B S R G R R Y/

B— 01 2 3 4 5 6 7 8 9 : ; < = >
C— @ ABCDETFGHTI]J]KLMNDO
D- PQRSTUVWXY Z [\] -
E— L " # % % ° () * 4+, - . /

F— 01 2 3 4 5 6 7 8 9 : ; < =>1

The Apple II really has only 64 characters in its character set, but it has four
ways of displaying each character. Thus, the table shows a set of characters at $00
thru $3F; the same characters, in the same sequence, appear again at $40 thru $7F, at
$80 thru $BF, and at $CO thru $FF. These represent what I call the first, the second,
the third, and the fourth quadrants of the character set.

201

Character codes in this first quadrant ($00 thru $3F) will be displayed in reverse
video: as black characters on a white background. Character codes in the second
quadrant ($40 thru $7F) will be displayed ina blinking mode. Character codes in the
third and fourth quadrants ($80 thru $BF and $CO thru $FF) will be displayed in nor-
mal mode: as white characters on black background.

Before we store any ASCII character in screen memory, we must first call FIX- -
CHR, to convert, if necessary, the ASCII character to the host system’s correspond-
ing display code. In the Apple II, FIXCHR is very simple:

FIXCHR ORA #%80 Set bit 7, so character will be displayed
in normal mode.

RTS Return appropriate display code to
caller.

1/0 Vectors

The Apple II has a subroutine in read-only memory to get a character from the
keyboard, and another subroutine to print a character on the screen. However, the
key-in routine at $FD35 does not return an ASCII code when you press the key for
an ASCII character; instead, it returns the appropriate ASCII code with bit 7 set.
Similarly, the screen-printing routine at $FBFD will print an ASCII character to the
screen, but the character will be in reverse video or blinking. In order to print an
ASCII character to the screen, you must first set bit 7 and then call $FBFD. Con-
versely, to get an ASCII character from the keyboard, you must first call $FD35 and
then clear bit 7. Therefore, the following patches are offered:

Subroutine to Print an ASCII Character to Apple 1l Screen

APLTVT ORA #%80 Set bit 7 in the ASCII code.
JSR $FBFD Call the ROM screen printer,
RTS Return to caller, now that ASCII

character originally in accumulator has
been printed to screen in normal mode.

Subroutine to Get an ASCIl Character from Apple Il Keyboard

APLKEY JSR $FD0OC Get ASCII character from keyboard
with bit 7 set. (Note: you may call
$FD35 instead of calling $FDOC.)

202 BEYOND GAMES

ORA #%80 Clear bit 7, leaving the accumulator
holding a conventional ASCII code.

RTS Return to caller, bearing ASCII
character code for depressed key.

Apple Il System Data Block

The 1/0 vectors ROMTVT and ROMKEY should be initialized to point to
APLTVT and APLKEY, respectively. This has been done in the Apple Il system data
block. You must enter the Apple II system data block into your system’s memory if

any of the software in this book is to run on your Apple II. See Appendices C15 and
El4.

203

Appendix B4:
The Atari 800

Screen

The Atari 800 microcomputer has the most flexible — and, perhaps the most
confusing — video-display hardware of any system discussed in this book. Unlike
the other systems, almost any portion of the Atari computer’'s memory may be
mapped to the screen. Furthermore, there are many different screen-display modes.
When the Atari computer is powered-up, the screen is in text mode zero. That's
comparable to the Apple II's low-resolution graphics and text display, which is com-
parable to the only video-display mode available on the Ohio Scientific or PET com-
puters.

The Atari computer makes other screen modes available to the programmer,
but the software in this book assumes a low-resolution text display, so you'd better
leave your Atari in screen mode zero if you expect to see any of the displays driven
by the software in this book. In other words, if you change the screen mode, the
Visible Monitor may well become invisible.

I mentioned that the screen buffer may be almost anywhere in memory. If that's
true (and it is), how can you determine the HOME address upon which all the
displays in this book are based? It's easy. A pointer at $58,$59 (88,89 decimal) points
to the lowest address in screen memory: the address we refer to as HOME. Before
running any of the software in this book, you must set HOME properly for your
system. Simply set HOME equal to the value of that pointer. HIPAGE, the value of
the highest page in screen memory, is equal to (the high byte of HOME) plus three.

Once we've set HOME and HIPAGE properly, we're home free. The other
screen parameters are fixed:

ROWINC .BYTE 40
TVCOLS .BYTE 39
TVROWS .BYTE 23
SPACE .BYTE $20
ARROW .BYTE $7B

204 BEYOND GAMES

Note that the top of screen memory is always at the top of programmable
memory, so if you add more programmable memory to your Atari 800, you'll move
the screen memory up higher in the address space.

Proper Display of ASCII Characters
Like the PET, and to a lesser extent the APPLE II, the Atari screen requires that
we perform a conversion before we can properly display an ASCII character on the

screen. To determine the nature of this conversion, let us first look at the ATARI
character set in Table B4.1,

Table B4.1: The Atari character set ATASCIL.

-0 —1-2-3-4-5-6-7-8-9-A-B-C-D-E—F

O—space | " # % % & ' () * + , — /
1- 0 1 2 3 4 5 6 7 8 9 : ; < = > 1
2- @ A B CDETFGHTI]J]KLMMNDO
3— P QR S TUVWXY Z [\ | -
4 special graphics characters

5 special graphics characters

6— a b c de f g h i j k I mn o
7- p q r s t u VvV W X y 2z - graphics--------

A quick examination shows that ASCII characters $20 thru $5F are ATASCI
(Atari’s character set) characters $00 thru $3F. Thus, if an ASCII character is in the
range of $20 thru $5F, we can convert it to the appropriate ATASCI character sim-
ply by subtracting $20.

Further inspection reveals that ASCII characters $61 thru $7A correspond to
ATASCI characters $61 through $7A. Thus, if an ASCII character is in the range of
$61 thru $7A, it needs no conversion to ATASCI; it already is the corresponding
ATASCI character.

Finally, if an ASCII character is not in the range $20 thru $5F or $61 thru $7A,
it's not a printable character and has no agreed-upon graphic representation. For
those cases we'll just leave them alone,

Figure B4.1 flow-charts this algorithm,

205

START

CLEAR BIT 7
SO CHARACTER
IS LEGAL
ASCLY

SUBTRACT
320 RETURN

RETURN

"
. | NOT A
I — PRINTABLE

| CHARACTER |
I
RETURN
A BLANK

RETURN

Figure B4.1: Flowchart of routine to convert an ASCII character for display on Atari screen.

Using the flowchart in figure B4.1as a guide, we can write source code for FIX-
CHR, which takes an ASCII character as input and returns an Atari display code so
that the character may be properly displayed on the video screen.

FIXCHR
FIXCHR AND #$7F Clear bit 7 so character is a legitimate
ASCII character.
SEC Prepare to compare.
CMP #$20 Character less than $20?

208 BEYOND GAMES

BCC BADCHR

CMP #$60
BCC SUB$20
CMP #$7B
BCC EXIT

BADCHR LDA BLANK

EXIT RTS
SUB$20 SBC #$20
RTS

Keyboard Input

If so, it's not a printable ASCII
character, so return a blank.
Character less than $60?

If so, subtract $20 and return.
Character less than $7B?

If so, return with the character.

If not less than $7B,

the character is not a printable ASCII

character, so return a blank.

Subtract $20 and
return.

If no key has been pressed, then address $02FC (764 decimal) contains $FF. But
whenever you depress a key on the Atari keyboard — even if a program is not scan-~
ning the keys — an electronic circuit will sense that a key has closed and will store
the hardware code for that key in address $02FC. However, the code in $02FC will
be a hardware code, not obviously related to ASCII or ATASCI.

Table B4.2: Atari Hardware Key-Codes.

Decimal Key

Hex Decimal Key Hex
$00 0 L $20
1 1 J 1

2 2 ; 2

3 3 3

4 4 4

5 5 K 5

6 6 + 6

7 7 * 7

8 8 0 8

9 9 9
A 10 P A
B 11 U B
C 12 RETURN C
D 13 I D
E 14 - E

F 15 = F

32 .
33 SPACE
34 .

35 N
36

37 M
38 /

39 ATARI
40 R

41
42
43
44 T
45
46
47

OSH»<m

207

$10 16 \% $30 48 9
1 17 1 49
2 18 C 2 50 g
3 19 3 51 7
4 20 4 52 BACKS
5 21 B 5 53 8
6 22 X 6 54 <
7 23 Z 7 55 >
8 24 4 8 56 F
9 25 9 57 H
A 26 3 A 58 D
B 27 6 B 59
C 28 ESC C 60 LOWR
D 29 5 D 61 G
E 30 2 E 62 5
F 31 1 F 63 A

The Hex and Decimal Columns give the low 6 bits of the hardware key-code stored
in address $02FC (764 decimal) when the given keys are pressed. Either SHIFT key
sets bit 6. CTRL key sets bit 7.

In order to convert that hardware code to ASCII, we need to understand its
nature. The six low-order bits of the hardware key-code uniquely identify the key.
(See Table B4.2.) Bits 6 and 7 identify its shift state. Bit 6 is set if the key is
typewriter-shifted; bit 7 is set if the key is control-shifted. The key is typewriter-
shifted if either SHIFT key is down; the CAPS/LOWR key has no effect on the
typewriter-shift state as reflected in the hardware key-code. The keyboard is
control-shifted if the CTRL key is down,

If you don't care about the keyboard's shift state, but merely want to determine
which physical key has been pressed, then you can clear the two high-order bits in
the hardware key-code and you'll be left with a number from 0 to 63 decimal (00 to
$3F) uniquely identifying the key most recently depressed. If you care about the
keyboard's typewriter-shift state but are indifferent to its control-shift state, then
you can clear bit 7 in the hardware key-code and you'll be left with a number from 0
to 127 decimal (00 to $7F), which means the keyboard can generate twice as many
characters as it has physical keys. To enable control-shifting, simply preserve the
hardware key-code, and you double once again the number of characters that the
keyboard (and hence the user) may generate.

Since the simple text editor presented in Chapter 11 assigns certain functions to
control-shifted keys, and since you never know when you might need some addi-
tional character codes from your keyboard, Appendix C16 presents a key-handling
subroutine for the Atari. This subroutine is capable of generating different

208 BEYOND GAMES

characters in each of the four different shift-states (unshifted, typewriter-shifted,
control-shifted, typewriter- and control-shifted).

It's a simple matter to use the eight-bit hardware keycode as an index into a
keyboard definition table. For any given hardware key-code, we may assign any
character we like. The keyboard definition table presented in Appendix C16 assigns
standard ASCII characters to all letter, number, and punctuation keys, in both the
unshifted and typewriter-shifted states. Other keys are assigned values consistent
with their expected use by the software in this book (eg: Control-P generates a $10,
thus making it a PRINT key in the eyes of the simple text editor). All keys and shift
states that have no special meaning to this software have been assigned character
codes of zero; feel free to change these character codes to any values you desire.

Assuming that we have in memory a keyboard definition table called ATRKYS,
we can get an ASCII character from the Atari keyboard with the following
subroutine, ATRKEY:

ATRKEY LDA $02FC Has a key been depressed?

CMP #$FF $FF means no key.

BEQ ATRKEY If not, look again. A key has gone down
and the accumulator holds its hardware
key-code.

TAY Prepare to use that code as an index.

LDA ATRKYS,Y Lock up character for that key and shift
state.

RTS Return with ASCII character
corresponding to that key and shift
state.

Print a Character to the Screen

The Atari 400 and 800 computers each provide a powerful I/O (input/output)
routine which allows the programmer to get characters from virtually any source,
and to send characters to virtually any device — the screen, the printer, the cassette
recorder, and the disk. But, as in the case of Atari’s varied screen modes, power
breeds complexity. I have found it easier to substitute my own simple routine to
print a character on the TV screen, bypassing the Atari I/O routines entirely.

Incidentally, this routine will work with any 6502-based computer that has a
low-resolution memory-mapped display. If you need a simple TVT simulator for
your home-brew 6502-based system with a video display, TVTSIM might meet your
needs. In any event, it prints characters to the screen, and avoids the necessity of
plumbing the depths of the many modes and data structures associated with Atari’s
central 170 routine.

209

With your system data block initialized as shown in Appendices C16 and E15
(which includes the TVT simulator as the subroutine to print characters to the
screen), you are almost ready to run the software in this book on your own system.

Setting the Top Of Memory

Address $2E6 (742 decimal) holds the number of pages of RAM available to the
BASIC interpreter. Store a $0D (13 decimal) in that location and BASIC will use
memory up to $0DFF, but will not use $0E00 and up.

NOTE: On the Atari, the software in this book uses memory from $0E80 to
$1FFF, which is the address space required by the ATARI DOS (Disk Operating
System) and the ATARI RS-232 serial interface, so you may not use DOS or RS-232
if you expect to use the software in this book. However, there should be no conflict
between software in this book and the cassette-based Atari 800.

Thus, we may set the top of memory with the following BASIC command:

POKE 742,13

When you have used the OBJECT CODE LOADER to READ and POKE object
code from all the appropriate E appendices into your Atari computer, run the
following BASIC program. It will initialize screen parameters and the top of
memory, and then pass control to the Visible Monitor.

100 REM Visible Monitor Start-Up Program for the Atari.
110 REM

120 REM First, set the screen parameters.

130 REM

140 REM A pointer at 88,89 points to lowest screen address.
150 LO=PEEK(88): REM Set LO to the low byte of HOME.

160 HI=PEEK(89): REM Set HI to the high byte of HOME.

165 IF HI < 32 THEN PRINT “ON AN 8 K ATARI YOU MAY NOT USE EDITOR
OR DISASSEMBLER”

170 POKE 4096,LO: REM Set Low byte of HOME.

180 POKE 4097, HI: REM Set High byte of HOME.

190 POKE 4101,HI+3: REM Set HIPAGE = Highest page in screen memory.

200 REM

210 REM Now set the top of memory available to BASIC.,
220 POKE 742,13: Tell BASIC to use only memory up to $0DFF.
230 REM

240 REM Now call the Visible Monitor.

250 X=USR(4615): REM Call the Visible Monitor as a subroutine.
260 END

210 BEYOND GAMES

Appendix ClI:

Screen Utilities

21

ws

APPENDIX Cl: ASSEMBLER LISTING OF
SCREEN UTILITIES

SEE CHAPTER S OF BEYOND. GRMES:. SYSTEMS

SOFTWARE FOR YOUR ©582 PERSOMAL COMPUTER'

BY KEN SKIER

FEBREFIEERBLERFSFUBREERBBRFLEBEBFBEREBHFRRHE

W WY W R wa aE WE Ul WE R WA WK WY WE WE We WY uh aE wa we

ZERO PAGE BYTES

FHEFBRERBSRBEPEFBIBBEREBBSBLBBBBIBERABFRB%

ME WA W wa W ua W we

9 agag= TU.PTR=8 THIS FOINTER HOLDS THE
ADDRESS OF THE CURRENT
SCREEN LOCATION.

;n
31
2z
33
34
35
25
T
=

5}
5
3
4]
3
9
13}
a
1]
a

NS ar ur we s

S W

Y
IS A
)

FFEPEEEBRREBERBI B LR BB BRSERRBEBR G S EBHEXRBIEHE

B
w
[

SCREEM PARAMETERS

W wk GE W uE WA ws He ue

FEEEEERRPLLBEERBREES IR ERNS A BRSSP EBHE LR RERRE
47a

EN

)
] .
e owe W e

SRz 1gad= PARAMS=%1820 THE FOLLOWIMNG ADDRESSES
MUST BE INITIRLIZED TO HOLDR
DATR DESCRIBING THE SCREEN
ON YOUR SYSTEM.

o

N

)
we we o

0
)]
NE we wa we

578
583 1880= HOME=FARAMS HOME IS A POINTER TO CHARARCTER

213

583
6509
519 1992=
B26
&38
548
653
668 1p33=
679
658
638
783
718 1994=
7Z3
7398
7493
Kig=5]
7BE 1BuS=
e
789
788
gva
8190 1826=
828
839
840 1887=
858
BEB
878 181il=
823
faasia)
jstals}
g18
9za
838
8949
853
SEg
973 1168
829
854
1229
1a149
1929
1933
1248
1268
1asa
1973
1886
1939
1103
1114
1128
11323
1149
1159
1158

214 BEYOND GAMES

wa

-.

“s owe we

we wr ous we e s ue we

[P —

ws own

B wn wr we wsown

an wr o

ws we us wa

we WS we ME us we W we wd u

POSITION IN UPPER LEFT CORNER.

ROWINC=PARAMS+2
ROWINC IS A BYTE GIVING
RDODRESS DIFFERENCE FROM ONE
ROW TO THE NEXT.

TUCOLS=FARAMS+3
TUCOLS IS A BYTE GIVING
NUMBER - OF COLUMNS ON SCREEN.
CCOUNTING FROM ZERO.)

TUROWS=FARAMNS+4
TUROWS IS A BYTE GIVING
NUMBER OF ROWS ON SCREEN,
CCOUNTING FROM ZERO.)

HIPARGE=PARAMSHS
HIPAGE IS THE HIGH BYTE OF
THE HIGHEST ADDRESS OM SCREEN.

BLANK=PARAMS+E YOUR SYSTEM 5 CHARACTER
CODE FOR A BLANK.

ARRCW=PARAMS+7Y YOUR SYSTEM' S CHARACTER
FOR AN UP-ARROM.

FIXCHR=PARAMS+BIL
FIKCHR IS A SUBROUTINE THAT
RETURNS YOUR SYSTEM S
DISFLAY CODE FOR ASCII.
CODE.

#*=$1103

SEFBERBEFEEFREFSEFIESREERBLEREREBEBBARBEPEDRS

CLEARR SCREEN

FFBBEERIERUBESBEBERBA LSRR LB EIERBBBLRIBI R L RS

1178
1129
1139
1288
1219
1228
1236
1248

1256
1259
1273
1288
1258
1289
1319
1328
1238
1349
1354
132608

1278
1288
1325
1428
1419
1423
14328
144@
1453
1458
1478
1429

1458
158¢

1163

1192

1188
1188

11ec 2

iiaF

111z

2 1113

i11g
1117

1118

111E

111E

1122

s r~ ar W us e s

CLEAR SCREEN,

PRESERVING THE ZERO PAGE.

SAVE ZERO FAGE BYTES THHT
WILL BE CHAMNGED.

‘SET SCREEN LOCATION TO UPPER

LEFT CORNER OF THE SCREEM.
LOAD ¥,Y REGISTERS WITH

®,Y DIMENSIONS OF SCREEN.
CLEAR X COLUMNS, Y ROWS

FROM CURRENT SCREEM LOCATION.
RESTORE ZERO PAGE BYTES THAT
WERE CHANGED.
RETURN TO CALLER,
PRGE PRESERVEL.

WITH ZERO

HREREBRESEEEFELRABDELRLEBERLRRLBBPEPLRBE P AP EEE

CLEAR PORTION OF SCREEN

4 BHESIEEFBBFFRLESPRRAEEIRRBERERARBIEERFERRSEE

ZBC41il R.TU JSR TUPUSH
282811 JSR TUHOME
H
AEE318 LDKX TUCOLS
ACB419 LDY TUROKS -
1311 JER CLR.XY
c 3
280311 JSR TU.POP
H
58 RTS
3
H
H
3
H
3
H
H
3
H
3
E
H
H
H
H
H
H
H
H
3
3
3
H
H
H
8E2AL1 CLR.XY STX COLS
H
33 TYA
AR TAX
H
H
ADBELB CLRRACK LDA BLANK
H
H
ACZ2ARLL LDY COLS
H
918a CLRPOS STA (TU.PTR),Y
5
H
=1 DEY

CLEAR X COLUMNS, Y ROWS
FROM CURRENT SCREEN LOCATION.
MOVES TU.PTR DOWN BY Y ROWS.

SET THE NUMBER OF COLUMNS
TO BE CLEARRED.

NOW X HOLDS NUMBER OF ROWS
TO BE CLERRED.

WE’ LI CLERR THEM BY
WRITING BLAMKS TO THE
SCREEMN.

LORD ¥ WITH MNUMBER OF
COLUMMS TO BE CLEARED.
CLEAR A POSITION BY
WRITING A BLANK INTO IT.

ADJUST INDEX FOR NEXT

215

1758
1768
1778
1788
1798
1608
1815
1829
1833
184@
1859
1568
1878
1828
1828
1950
1918
1928
1928
1949
1859
1969
1879
1289
19gm
2699
2018
2829
2838
2849
2056
Zosa
zarn
2889
2630
Z18%
2118
21283
2139
2149
2158
2162
zive
2189
2139
2209
2219
2220
2238
2248
2258
2269
2278
2289
2234
Z308
2313
2328

11z21 1@FB

1123 287611

1126 CA
1127 1BEF
1129 66

11Z2A @3

1128 AZ289
11Z0 AZEg

112F 18
1130 SBan

216 BEYOND GAMES

T

- e

“e

O we e e

[9]
e
[42]

(S OWE ee Be Mk WE MR ug WE WS wE uE w ME wR e MR W ARG uE we W

5w e owe

s e wp

MY WD wn wE we Wi wE ws

we we wi

BPL

JER

DEX
BPL
RTS

CLRPOS

TUDOWNN

CLRROK

-.BYTE 8

FOSITION ON THE RONW.

IF MOT DOME WITH ROW,
CLEAR MEXT POSITION...

IF DONE WITH ROW, MOVE
CURREMT SCREEN LOCATION
DBOWMN BY ONE ROMW.

DONE. LAST ROM YET?
IF NOT, CLEAR NEXT ROM...
IF 50, RETURN TO CALLER.

DATA CELL: HOLDS NUMBER OF
COLUMNS 7O BE CLERRED.

FHESPEBIAEPERB BB EIFRFEBEEBEPSLE P IR R LS DI SRSS

TUHOME

BEEESERERBEEBESHSBRL AR BE LS A B LR R L FEBLEBEHRLS

Loy

CLC
BCC

HOME LDX #8

#3

TUTOXY

SET TU.PTR TO UPPER LEFT
CORMER OF SCREEN, BY

ZEROING X AND Y AND THEN
GOING TO X,Y COORDINATES:

B EEBEEFFEEERFRBERISRPBE P LBE IR BB S LS R BB RPHEH5S

CENTER

HBERFDBSESBELBABLERSBBUBRBREB RS R E B LIS RSB RS S

SET TU.PTR TO SCREEN' S
CEMTER:

2358
2342
2258
2369
2378
2388
2358
2482
2418
2428
2439
2448
2453
2468
2478
24234
2428
2509
2518
2528
2538
2548
255@
2558
2573
25288
2559
2688
2618
Z2629
2628
2648
2650
2658
2678
2683
2689
2708
2718
2728
2728
2743
2753
2768
2778
27E3
2738
2888
2818
2828
2828
2848
Z8%8
2889
2873
2888
2888
2853

1132
1135
1138

1137
113A
1138

113C

1130
1148

1142

1145
1148
1148

1148

114E

.
ARZ415 CENTER LDA TUROWS

4R LSR A
AS TAaY
H
3
ADB31a LoA TUCOLS
4A (SR A
AR TaxX
H
H
H
H
H
H
H
H
H
H
H
3
H
H
£l
H
H
H
3
H
H
H TUTOKY
H
H
H
H
H
H
38 TUTOXY SEC
H
3
H
ECB218 CPX TUCOLS
Sua3 BCC X.0K
k]
REG218 LDOX TUCOLS
*
H
38 X. 0K SEC
cCo41p CPY TUROWS
8093 BCC Y.OK
H
3
ACE418 LDY TURQWS

ws W% we

ADA1B Y.OK

LA HOME

LOAD A WITH TOTAL ROWS.
DIVIDE IT RY TWO.

Y MNOW HOLDS THE NUMBER OF
THE SCREEN' S CENTRAL ROM.

LOAD A WITH TOTAL COLUMNS.
DIVIDE IT BY TiO.

X NOW HOLDS THE NUMBER OF
THE SCREEN' S CENTRAL COLUMN.

¥ AND Y REGISTERS NOW HOLD
X,Y COORDINATES OF CENTER
OF SCREEN.

SO NOW LET'S SET THE SCREEN
LOCATION TO THOSE X,Y
COORBINATES:

FHAEEERBBERRSEBERSERFEESESETRESB ISR BRI BBFEF

FEBERSSEFFEEFSSFLEEIEEF R EEBTLRFREBBREBRERLH

SET CURRENT SCREEN LOCATION
TO COORDINATES GIVEM BY
THE X AND Y REGISTERS.

IS X OUT OF RANGE?

IF NOT, LERAVE IT ALONE.

IF X IS OUT OF RANGE, GIVE
IT ITS HIGHEST LEGRL UALUE.
NOW X IS LEGAL.

IS Y OUT OF RANGE?
IF NOT, LERVE IT ALONE.
IF Y IS OUT OF RANGE, GIVE

Y ITS HIGHEST LEGAL VALUE.
NOW Y IS LEGAL.

SET TU.PTR = LOWEST SCREEN

217

2314
2328
2933
2343
2558
29€9
2374
382
22328
3843
3918
2029
3030

398a
3939
3169
3119
3123
2139
3146
2159
3ica
3170
3188
31233

N,
2]
&

NN
P o

o
(N HQD

WM N NN

(D Q) 0) 0w W wow
B W W~ o, u

(.
it
3 =
2]

11%1
11532
1156

1158
1153

115R
11E8
118C
1158
1169
1162

1183
1165
1167
1168
11€B
1160
116F
1179

117z

1174

e

1176
1179
117A

117C

117F

85809
ADB118
55491

28
ju=]

8A
13
£S89
o683
E6al
18

coes
FEap
i8
509213
SBUZ
Eeal
28
D9FS

£598
25

S 59

ZUSB11

ASai TUSKIP LDA #1
H

218 BEYOND GAMES

sTA
L.0R
STR

PHP
CLD

TXA
CL.C
Apc
BCC
INC
CLC

H
H
COLSET CPY
EEQ
ADDROW CL.C
AlC
ECC
e
DEY
BNE

TU.SET STA
FLP
RTS

CcLC
BCC

H
UUCHAR JSR

s

TU.PTR ADDRESS.

HOME+1

TU.PTR+1
SAVE CALLER’ S DECIMAL FLAG.
CLEAR DECIMAL. FOR BINARY
ADDITION.
ADD X TO TU.PTR

TU.PTR

COLSET

TU.PTR+1

#a ADD Y3ROWIMC TO TU.PTR?
TU.SET

ROKING
#+4
TU.PTR+1

ADDROW
TU.PTR

RESTORE CALLER' S DECIMAL FLﬁG
RETURN TO CALLER

FHEEESBBEFEIAHEREE S ERIBAAREPBIRPIREREBLRBHES

TUDOWM, TUSKIP, and TUPLUS

FRKELPPEEEAFEBFEES AR S RBBSEREBRRABLEFRBREREIRS

ROWINC MOVE TV.PTR DOWN BY ONE ROW.
TUPLUS
TV.PUT PUT CHARACTER OMN SCREEN

AND THEN

SKIP OME SCREENM LOCATION
BY INCREMENTING TU.FPTR

24399
3500
3519
3528
3528
3548
3558
3560
3579
2559
3598
3699
3519
3528
3530
3548
3850
3669
3870
3550
3630
3728
3718
3728
3720
3740
arsa
3763
3779
a7es
arsa
320
2810
3829
3838
3840
3850
3850
3879
3280
3838
33058
3519
agza
3332
3940
3352
3350
3379
3988
3538
4023
4819
4529
4638
4849
4258
4250

H
H
TUFLUS PHP

1181 93 TUPLUS ADDS ACCUMULATOR
1182 D8 CLD T0- TU.PTR, KEEPING TU.PTR
i1es 18 cLc WMITHIN SCREEN HMEMORY.
1184 6598 ADC TU.PTR
1185 S©nzZ BCC #+4
1188 EE81 INC TU.PTR+1
118A €508 sSTA TU.PTR
118C 33 SEC IS CURRENT SCREEN LOCATION
1180 ADBS1D L0A HIPAGE * OUTSIDE OF SCREEN MEMORY?
1159 C581 CMP TU.PTR+1
1182 BBYS BCS TV.OK
.
1194 ANOLLB LDA HOME+1 IF SO, MWRAP ARCUND FROM
1197 8581 STA TU.PTR+1 BOTTOM TO TOP OF SCREEN.
E
1189 28 TU.OK PLP RESTORE ORIGINAL DECIMAL
118A €@ RTS FLAG AMD RETURN TO CALLER.
3
H
3
£
3
?
H
5
H
H
T EABEERBEEBBEBREEFBRBLRLBBRFLSFRRFEESHBRBBERS
’
H TV.PUT
E]
3 BHEEEPEFERFEPEIBERFARBE RS ESRIRBBERBRSRRBRERS
t]
H
H
H
H
’
1198 291118 TV.PUT JSR FIXCHR COMUERT ASCII CHARACTER
H TO YCUR SYSTEM' S DISPLAY
H CODE.
E]
119 AZZA Loy #8 PUT CHARACTER AT CURRENT
112 S183 STA (TU.PTR),Y SCREEM LOCATIONM.
lifAZ 62 RTS THEN RETURN.

e e A ar @S PP G W W we we

FRBEBFEBEREREEBERP AR ER A BEF IR RBLB BB S RBABELHS

219

487G
4289
4RSH
419a
4118
4123
4130
41483
4159
41608
4170
4183
4156
4299
4213
4228
423a
4240
4258
4280
4278
4289
4298
4323

4310
4320
4339
4349
4358
4360
43783

4380
43399
4428
4419
4428
4439
4443
4450
4458
4478
4488
4493
4523
4510
4520
453@
4548
4550
4550
4578
4580
4598
4509
4518
4528
46538
4548

11R3 43
11R4 4A
11R5 48
11R6 4A
11AY 4R

11AB 2BE611

11AB 28vCl1

11RE 68
11A8F Zgesll

11BZ ZB7Cll

11B5 €8

1185 @8
1167 U8
11B8 Z98F
1iBA CS2AR

11BC 3282

220 BEYOND GAMES

U

ME wt wa @ wr WS ue wa

[B]

s we wr we wn as s as

W Ay e oas W

W wr Wi owe

ah WE AE WE wE s aRn us

we WY an W

DISPLAY A BYTE IN HEX FORMAT

HHREFFERXBBBERFSEFBEEERFBFERBSBER LRI RS LB I HBS

BYTE FHA
LER
(SR
LSR
LOR

222D

JER ASCII

JER VUCHAR

PLA
JOR ASCII

JSR VUCHAR

3
v

SAVE BYTE TO BE DISPLAYED.
MOVE 44 MOST SIGNIFICANT
BITS IMTO POSITIONS
FORMERLY OCCUPIED BY 4
LEAST SIGNIFICANT BITS.

DETERMIME ASCII CTHAR FOR
HEX DIGIT IN A% 4 LSB.

DISPLAY THART ASCII CHAR ON
SCREN AND ADUANCE TQ MEXT
SCREENM LOCATION.

RESTORE ORIGIMAL BYTE TO A.
DETERMIMNE ASCII CHAR FOR
R S 4 LSB.

STORE THIS RS5CII CHAR JUST
TO THE RIGHT OF THE OTHER
ASCII CHAR, AMND ARDVANCE TO
NEXT SCREEMN FOSITION.

RETURN TO CARLLER.

FPHLEBEFBEHHERSHEREIBPIIBSRPEBRE PP SLBEBABES S

HEX-TO~-ASCIX

BEBEFERBEEREBHERSLERIDIPBRLESSRERSSE RS RBRBERH

ASCII PHP

an

CL.D
AND #%8F
CMP +$6A

BMI DECIML

THIS BOUTINE RETLU ;
FOR 4 LSE IN ACCLHMLLATOR,
CLEAR HIGH 4 BITS IN A,
IS5 ACCLFULATOR GREATER
THAMN §7

IF MNOT, IT HUST BE £-3.

45549
48549
4679
4528
4598
4729
4719
4729
4738
4743
4759
47549
477D
4788
4723
48129
4810
45829
4839
4543
4858
4268
45373
4889
4839
4309
4314
4323
4333
4344
4358
42ED
4973

53748
5a2a
5689
S1@a
s1ii@a
5129
5138
5148
5158
5168
5178
5180
5198
5264
czig
5228

11PE

iicg

11Ccz

11C3

11C4
1i1cs
11cs
11C7

lice
11CA
L1CE
11CD

11CE
11CF
1103
11Dl

11Dz

5386

6533

za

=8

MDD
DU m®

ASH1
48
ASEY
48

58
42
£A
48

64

D

-t

ar b we 7] e we

ue

B ows ME wn WA VB wd uE as BT e we Wl ws WS ue W uE MR we

{5 e WE ue we an WE e e W

5
o

[4}]

we wu

ar e

an wn

)

ADC #6

PLF

RTS

IML ADC #%312

IF so, IT MUST BE A-F.

ADD 36 HEX TO CONVERT IT.
TO. CORRESPONDING ASCII CHAR.
IF A IS 9-9, RADD 38 HEX

TO CONVERT IT TO
CORRESPONDING ASCII CHAR.

- RESTORE ORIGINAL DECIMAL

FLAG, AND
RETURN TO CALLER

FEBEHELBSEESELFEEB LSS BBABRBEBSIBRERLLEESHS

TUPLSH

FRERRBBBEFEERSHAESREREPEBHBHERREIBERFPIEFESH

i
R
[
DPXD

TAY

LoA
FHA
LEA
PHA

TR
PHA
XA
PHA

RTS

TU.PTR+L

TU.PTR

SAVE CURRENT SCREEHN LOCATION
ON STACK, FOR CALLER.

PULL RETURN ADDRESS FROM
STACK AND SAVE IT IN X AND
Y REGISTERS.

GET TU.FTR AND

PUSH IT ONTO THE STARCK.

PLACE RETURM ADDRESS

BACK ON STACK.

THEN RETURN TO CALLER.

221

5479
5489
5488
5Gaa
5518
5528
55209
5548
6524
5564
5579
5528
5538
SE89
5518
5628
5538
5649
5659
5568

222 BEYOND GAMES

1102
1104
1108
1105

L1D7
1108
1188
11DB

11100
11D
11DF
11E8

11EL

E8
3131
68
AB

£3
2598
6B
8581

a8
48
=43
48

=14}

@e wme W ows o wE W0 an

wr owe ws ws we

o WE WE WE Wr WA WS ws W g we W ug

CALLER WILL FIND TU.PTR ON
STRCK, 1LOW BYTE ON TOP.

HHBEABEEEPEBEBEBREERFRBEBBEFLDERFREBRBERBREHS

TU.POP

HERBLIEFREBB BB RBEURBEBBBHERLEBERBBELILBEIDRS

H
TU.POP PLA

we ws

we s

ws as

TAX
PLA
TAY

PLA
STA
PLA
STA

TYA
PHA
T#A
FHA

RTS

TU.PTR

TU.PTR+1

RESTORE SCREEM LOCATION
PREVIOUSLY SAVED ON STACK.

FPULL RETURN ADDRESS FROM
STACK, SAVING IT IN X...

«.LAND IN Y
RESTORE. ..
v« TU.PTR

« . FROM
... STACK.

PLACE RETURM ADDRESS
BACK ...

.+« ON STACK.

RETURMN TO CALLER.

Appendix C2:

Visible Monitor (Top Level and
Display Subroutines)

223

ia
8
28
43
58
€3

83

199
118
128
139
148
158
168
178
182
199
209
218
279
228
249
z58
269
273
228
259
398
319
3za
338
349
358
358
278
389
339
499
418
428
438
448
459
458
478
459
430
559
519
524
530
545
550
553
578
580

1223

Bu2g

[]

ME we WE wE ME WA us WO ue WE UB Me WG US WE Gr WA WE e @I ur we

Wa MO Gy R we WS BE WA WS wE U uE U U we

. ws we

“l ue wn we

wa wE we us we

APPENDIX C2: ASSEMBLER LISTING OF
THE VISIBLE PMONITOR

TOP LEVEL AND DISPLAY SUBROUTINES

SEE CHAFTER é OF BEYOND GAMES: SYSTEMS

SOFTWARE FOR YOUR 6582 PERSONAL COMPUTER

BY KEN SKIER

FEFRSERE RS RBEERLR LRI REEF RS RERRERRBRFERRELRE

EQUATES

SEEEEEEESEFFFREREERRSFIFLERRELBLERR T ERESS

TU.PTR

a

GETPTR = 2

PARAMS =-$1902 ADDRESS OF SYSTEM DATAH
BLOCK.

ARROW = PARAMS+Y
THIS DATAR BYTE HOLDS YOUR
SYSTEM’ 5 CHARACTER CODE
FOR AN UP-ARRONW.

ROMKEY = PARAMS+HE
ROMKEY IS At POINTER TO
YOUR SYSTEM S SUBRDUTINE
TO GET AN ASCII CHARACTER
FROM THE KEYBOARD.

SPACE = $20@

225

5389

608 VaTF=
610

620 BBBl=
38

646

658.

668

679

€80

698

708

718

728

730

749

758

768

778

7808

799

828

81@

820

838 1100=
840 1108=
858 1113=
868 112B=
878 113C=
888 1176=
838 117C=
968 117F=
9i@:1181=
928 11A3=
920 L1B6=
940 1iC4=
958 11D03=
S68

g7a

98a

999 1208

1808
1919
1023
1838 1ZE3=
1848
1858
1860
187@
1680
189a
1109
1118
1129
1139
1140
1158
116@

226 BEYOND GAMES

We WE wa Me WE un WA wp us W wh WE

ws ws we wa we

- owr ows

ws ws wewe ‘un we

RUBOUT =

CR = %@D

SHREABFERBBBPEBEBEEPEERRRFFIRADRRRBERBRBR R DS

REQUIRED SUBROUTINES

HREPBEBBAEBHFBEBEBEBIRBERBSRRBERBBBBHRFR LRSS

TUSUBS =

CLR.TU

$7F

ASCII FOR CARRIAGE RETURM.

$11938
TUSUBS

CLR.XY TUSUBS+%13
TUHOME TUSUBS+HEZB
TUTOXY = TUSUBS+%$3C
TUDOWN TUSUBS+$76
VLICHAR TUYSUBS+STC
TUSKIP TUSUBS+5B7F
TUPLUS = TUSUBS+$8L
VUBYTE TUSUBS+$A3
ASCII = TUSUBS+3B6
TUPUSH TUSUBS+$C4
TU.POP = TUSUB5+$D3
% = $1269

UFDATE = *+%E3

1179
1189
1198
1228
1218
1228
1230
1249
1253
iZ2E8
1278
1zea
1259
1209
1316
1323
1338
1349
1353
1369
1378
1329
139w
1489
1419
1429
143a
1448
1458
1468
1478
1488
1439
1528
1513
1528
1539
1543
1553
isea
1579
15688
1536
1686
1510
1628
1633
1649
1658
1654
1€7Q
1629
1€33
1703
171@a
1729
1738
1749

1269

1281

1282

1z@a3

1204

1281=

125

1227
1208

1Z26F
1213

©2

(515}

[51]

2a

a8

BeBa

@3
na

281212

298312

18
Q8F6

Pl U0 Ws WE W we WS us we we ws

EBEBERFERERBERSRBRESSRBFRBERRPEPBIRBEBHRERBRS

USER-MODIFIABLE DATA

BRBEBSEBARBREEEBIRLSRBEIRBLEESPRELEFETREERBE

FIELD .BYTE @
H

REG.A .BYTE @
H

REG.X .BYTE @
3

REG.Y .BYTE B

REG.P .BYTE B
H
H

REGS = REG.A

SELECT .WORD @

.
td
H
-
H
H
.
3
-
s
.
E
.
*
.
s
H
-
1
-
’
»
3
»
.
H
-
1
-
H
H

- ows we

- e

NUMBER OF CURRENT FIELD.
(MUST BE. 8-6.)

IMAGE OF ACCUMULATOR.
IMAGE OF X-REGISTER.
IMAGE OF Y-REGISTER.

IMAGE OF PROCESSOR STATUS
REGISTER.

POINTER TO CURRENTLY-
SELECTED ADDRESS.

FEUBEBBERBEBRREEBEREBEBEEBRELRRERERERERREIES

THE VISIBLE MOMITOR

PEERFBEEFERBFEBBEEEPBERREEBFXBREBREREKBEIESBHR

SMON PHP
CLD

JSR DSPLAY

JSR UPDATE

CL.C
BCC VISMON+1

SAVE CALLER’S STATUS FLAGS.
CLEAR DECIMAL MODE, SINCE
ARITHMETIC OPERATIONS IN THIS
BOOK ARE ALKAYS BINARY.

PUT MONITOR DISPLAY ON
SCREEN.

GET USER REQUEST AND
HANDLE IT.

LOOP BACK 10 DISPLAY...

227

1758
1758
1778
1786
1788
1808
18108
i8z8

1836°
1848

1858
1869

1879

1869

1890,

1908
1918
1928
1934
1949

1958 .

1968
1978

1212 29C411 DSPLAY JSR TUPUSH

1215 2g2512
1218. 283412
1Z1B 285C12
1Z1E zBAF1Z

1888 -

1998
Z88a
2419
2928

z@z..
2849’
zesy’
2068 .

2879
2788
2834
2188
2118
212@
2134
2149
Z158
2169

z17a.

2188
21983
2298
2218
2228
2238
2248
2250
22658
2z7a
2280
2299
2309
2318
2328

1221 Z9D311

1224 &9

1225 [z@2
1227 Agez
1229 Zg3C1l1

1Z22C AZ1Y:

1ZZE ARa3

228 BEYOND GAMES

C

[© @9 we us uE WS we ws aa us s WK we W us us ws ue W

e ME We WS e gs WE Wi ous wE

E we A ua e un

.
H

a

FHFEFEHEBEREREEFIREIERE RS UFERS PR S B EIBEL DR 5%

MOMITOR-DISPLAY

EERERBERBBEBEEB AP EI RIS BB EBLRERBE SRR R RSB L ERBH

JSR CLRMON
JSR LIMNE.1
JSR LINE.Z
JSR LINE.3

JSR TU.POP

RTS

SAVE ZERO PAGE BYTES THAT
WILL. BE MODIFIED.

CLEAR A4 PORTION OF SCREEN.
DISFLAY LABEL LIME.
DISPLAY DATA LINE.
DISPLAY ARROW LINE.

RESTORE ZERO PAGE BYTES
THAT WERE SAVED ABOVE.

RETURM TO CRALLER.

*****#***%$¥$******%%%*********%%%ﬁ%#*%**%#*

CLEAR PORTION OF SCREEN

e T O t

RMON LDX #2
Loy #2
JSR TUTOXY

LOX #25

LY #3

SET TU.PTR TO COLUMN 2,
ROW Z.

LOAD X WITH NUMBER OF

COLUMNS €25) TO BE CLEARED.

LORD Y WITH NUMBER OF
ROWS (3) TO BE CLEARED.

2230 1238 281311 JSR CLR.XY CLEAR X COLUMNS, Y ROWS.
2343 3

2358 1233 58 RTS RETURN TO CALLER.

2366 H

2379 H

2323 3

2398 H

24728 H

2418 3

2428 3

2439 H

2445 H

2458 H

Z24R9 H EETETLTELEL ST LTS EELE S e e S22 LR 23 222222 22
2478 H

2488 H DISPLAY LABEL LINE

2458 H ‘ .
25468 H aH%**!‘-ﬂs********%*$$*¥$$$*¥$$$$$$$$%*&*#iﬂs%%iﬂﬁ
2519 3

2528 3

25372 3

2548 3

2558 H .
2568 1234 AZBO0 LINE.1l LDX #13 X-COORDINATE OF LABEL “A".
2573 1236 AZB2Z LOY #2 Y-COORDIMATE OF LABEL "A".
25688 1238 2813C11 JSR TUWTOXY SET TU.PTR TO POINT TO
254y 3 SCREEN LOCATION "OF "LABEL "A
25845 3

2516 1238 Argy LOY %8 PUT LABELS ON SCREEN!

2628 123D BCS5112 STY LBLCOL INITIALIZE LABEL COLUMN
2638 H COUNTER.

2648 H

2ESH 1240 BISSZ21i2 LBLOOP LDA LABELS,Y GET A CHARACTER AMD

2568 1242 287C11 ISR UUCHAR PUT IT ON THE SCREEN.

2578 1246 EES11Z INC LBLCOL PREPARE FOR NEXT CHARACTER.
2688 1243 ACS11Z LOY LBLCOL DOMNE LAST CHARACTER?Y

2639 124C CBZA CPY #18 .

2759 124E 06Fa BME LBLOOFP IF NOT, DO NEXT CHARACTER.
27184 H

2720 1250 6B RTS RETURN TO CALLER.

2730 1251 ©8 LELCOL .EBYTE @ DATA CELL: HOLDS COLUMN
2743 Cs OF CHARACTER TO BE COFIED.
2753 H

2768 3

2778 3

2789 H

2738 1252 41 LABELS .BYTE A X Y

2798 1253 29

2799 1254 29

27998 1255 59

2798 1256 285

2798 1257 208

2738 1253 &9

2733 1253 29

2798 1258 29

2759 1Z5B 58

28838 3

2810 :

229

2828
2838
2849
2858
2868
2878
2859
2899
28688
2318
23929
2938
2348
2959
2868
2979
2368
2939
3v03
3818
38208
3039
3844
3853
388
3279
3888
3928
3188
3118
3128
3138
3143
3158
31648
3178
3188
3159
3208
3218
3226
3238
3249
3258
3268
3279
3z80
3289
3200
3318
3328

oo
333

3348
3358
3360
3379
3388
3398

1258C

12GE

1269

1263
1286
1269
1Z6C

126F

1275

1276

1273

127D

RZBZ

ABa3

283C11

ADBE1Z2
Z28R311
ADBS1Z
28a311
2B7F 11
288412

48

22R311

Za7FLl

€8

287C11

297F11

230 BEYOND GAMES

-~

wr s wr

we we we we

@r at b we WA we ue us

'Y

wa us ue we ws “s ue s

we wr

ERHSBBERBBBBBRERBBBAEBEFPRBBEREBEBEBRIRBRSH

DISPLAY DATA LINE

FEFREREEEBEFREREREPBRRBREBIRBHREFESBEHBHREIER

NE.2Z LDX

LDY

JSR

LDA
JER
Lon
JSR

PHRA

JER

JSR

FLA

#2

#*3

TUTOXY

SELECT+1
VUEYTE
SELECT
VUBYTE
TUSKIP

GET.SL

UUBYTE

TUSKIP

VUCHAR

TUSKIP

L0AD X WITH STARTING
COLUMN OF DATA LINE.

LOAD Y WITH ROW NUMBER
OF DATA LINE.

SET TU.PTR TO POINT TO
THE START OF THE DATA LIMNE.

DISPLAY HIGH BYTE OF

"CURRENTLY-SELECTED ADDRESS.

DISPLAY LOW BYTE OF
CURRENTLY-SELECTED ADDRESS.

SKIP ONE SPACE AFTER
ADBRESS FIELD.

GET CURRENTLY-SELECTED
BYTE.

SAVE IT.

pIsFLAY IT, IN HEX FORMAT,
IN FIELD 1.

SKIP ONE SPACE AFTER FIELD
1.

RESTORE CURREMTLY-SELECTED
BYTE TO ACCUMULATOR.

DISPLAY IT IW CHARACTER
FORMAT, IN FIELD Z.

SKIP ONE SPACE AFTER FIELD 2.

DISFLAY 8582 REGISTER
IMAGES IN FIELDS 3-6B:

3429
3419
34249
3438
3449
3459
346568
3472
3489
3499
3588
3519
3526
3534
3549
3558
3560
3570
35848
3598
3608
361G
3620
36320
2648
3659
3669
3679
3688
36398
3705
71y
3723
3733
3740
3752
3758
3773
3789
3730
238818

1283

1285
1zea
1Z8B

1Z28E
1Z78F
12381

1293

1294
1298
1297

1289
128C
1238
12A1

1Z2R3
1275
12R7
12R/8
12A3
1ZAB
1ZARD
1ZRE

RZEB

BOB112 U
26A311L
Z287F1l

£8
E8o4
DgFz

[=35]

G532
48
REE3

)

ADBSiZ
8582
ARZ5LZ
8533

[gbajaia]
Bl22
[3t=]
[=1=]
8502
8623
S8
€9

Lox
H
UREGS 1.DA
JSR
JSR

INX
CPX
BNE

ws

RTS

ws wr ue

us wa we owe WS U us W

WE wE WS ws B3 wa WE uR e

[we we

T.SL LDA
FHA
LDBX

LDA
s5TA
LA
STA

LDY
LA
TAY
FLA
sTA
STX
TYA
RTS

we e wr we ws we

#3 START WITH ACCUMUCATOR

IMAGE.

REGS, X LOOK UP THE REGISTER IMAGE.

UUBYTE DISPLAY IT IN HEX FORMAT.

TUSKIP SKIP ONE SPACE AFTER HEX:
FIELD. '

GET READY FOR NEXT RE@ISTER.;.

*4 . DONE fOUR REGISTERS YET?
VUREGS IF NOT, DO NEXT. ONE...

IF ALL REGISTERS DISPLAYED,
RETURN.

FHFEEEBBRBBBIBEFFBIRRPBEDLSEB RS RIBRBEBBERHRES

GET SELECTED BYTE

BREESDERBEPHBIEESRFERBSEBRFBHPERRBFRBEBEXRIRSFRE

GETPTR GET BYTE POINTED TO BY
THE SELECT POINTER
GETPTR+1 (PRESERUING THE ZERO PAGE).

SELECT
GETPTR
SELECT+1
GETPTR+1

E3%)
(GETFTR), Y
GETFTR

GETPTR+1

RETURN TO CALLER.

231

3930

3998

4229

4B1@

4222

40839

4943

458

4850

4878

408a

4098

4129

4110

4128 12AF AZOZ
4138 12B1 ABE4
4149 1ZR3 Z@3Cll
4153

4168

4178 12BE ACBBIZ
4188 12B9 28
4159 12BA COA7
4208 12BC S965
421@ 1ZBE ABGA@
4226 12C0 BCEBLZ

L

fof WS e Ma WE ws wN wa G US we WS s we WS

#**#**********%*************%#*i**%**%**%***

DISPLAY ARROW LINE

#**%*ﬁ*******##*********#***%*%*##%**5&**#**

NE.3

4238 12C3 BSCDLZ FLD.OK

4z24@

4253

4288 12C6 AB
4z78

4289

4238 12CY ADGT18
4388 12CA 9164
4319 12CC &8
432@

4338

4348 12CD 13
43483 12CE 86
4348 12CF @8
4358 12D@ @B
4359 1201 BE
4369 1202 11
4368 1203 14
4378

4388

4388

4408

4418

4428

4438

232 BEYOND GAMES

F'

.o

- e

we we wr wa wE Wi we

ELDS

LD #2
Loy #4
JSR TUTOKY

LDy FIELD
SEC

CPY #7

BCC FLD.OK
Loy #3

STY FIELD
LBA FIELDS,Y

TAY

{ DA ARROW
STA (TU.PTRI,Y
RTS

.BYTE 3,6,8

.BYTE $0B,$BE

.BYTE $11,%14

LOAD ¥ WITH STARTING COLUMN.
LOAD Y WITH ROW NUMBER.

SET TVU.PTR TO BEGINMNING

OF ARROW LINE.

{O0K UP CURRENT FIELD.

LOOK UP COLUMN NUMBER FOR
CURRENT FIELD.

USE THAT COLUMN NUMBER AS
AN INDEX INTO THE ROW.

PLACE AN UP-ARROW IN
COLUMN OF THE ARROW LINE.
RETURN TO CALLER.

THIS DATA RREA SHOWS WHICH

COLUMN SHOULD GET AN UP-
ARROW TO INDICATE ANY ONE

OF FIELDS B-8. CHANGING
ONE OF THESE URALUES MWILL
CAUSE THE UP-ARROW TO APFEAR
IN A DIFFERENT COLUMN WHEN
INDICATING A GIVEN FIELD.

Appendix C3:

Visible Monitor (Update Subroutine)

233

19
8

43
59
[=14]
72
89
215}
pRal7]
118
1Z29
134
149
159
169
179
128
199
283
z18
223
233
248
258
2e9
279
280
299
369
318
329
329
344
356
369
3va
329
389
483
418
429
433
448
458
4683
478
451
4388
503
518
S29
539
540
=313
SEB
578

1Bg7r=

1985=

1813=

e WE uE we ME v GR WE WE e us WO we Wl WS ws W ud WE W s

Ve wa WS we uE W ws s

we we ows we wa we

ws ws wn

ws we ws ws wy

AFPENDIX C3: ASSEMBLER LISTING OF
THE VISIBLE MONITOR

UPDATE SUBROUTINE

SEE CHAPTER 6 OF BEYOND GAMES: SYSTEMS

SOFTWARE FOR YOUR 6582 PERSONAL COMPUTER

By KEN SKIER

KEEHEBERIPFHEELRRBERERBEFFERPERBEBERBRBERES RS

EQUATES

BEEBBEBEBHEBBBABBISEBRBBBBEPEEIRBREBRERERD

TU.PTP

[}
Q

GETPTR

#
N

PARAMS = $10@8@ ADDRESS OF SYSTEM DATA
BLOCK.

ARROW = PARAMS+T
THIS DATA BYTE HOLDS YOUR
SYSTEM' & CHARRACTER COIE
FOR AN UP-ARROK.

ROMKEY = PARAMSHS
ROMKEY IS A FOINTER TO
YOUR SYSTEM & SUBROUTINE
TO GET AN ASCLI CHARACTER
FROM THE KEYBOARD.

DUIMMY = PARAMS+$10

DUMMY RETURNS WITHOUT DOING
ANYTHING.

235

588
599
509 BBz28- SPACE = %29
6i8
BZ8 @87F= RUBOUT = ®7F

533 H

648 BEZZ0= CR = $80 ASCII FOR CARRIAGE RETURN.
653
EG8
678
558
699
Kg7iv]
Tla
7E8
738
744
7oa
(g=r:]
774
7e8
759
888
818
8za
833
849
B25a
o568
879 1184= TUSURS
B8B83 1188= CLR.TY
830
=)
S1lg 1zZ88= UMSUBS = %1228 STARTIMG PRGE OF VISIBLE
9z8 MONITOR CODE,

938
8472 1294= GET.SL
853
868
978
o83
sS85
1858
18913
1929
1833
1v4@
1253
1860
1arg
1886
1836
1129
1119
11za
1138
1144
1158

wr wr

we

we ous ue

wr s

FEXBEBERRBBH B EP L LB BEBLBI R BRI BB R B LBREEBE ISR

REGUIRED SUBROUTINES

FHPHABEFLEEBHPBEEFRPLBERE LR B FBELEEER PRI BRESES

WE wE UE uE W us W wE Gl UE wa Y aE W W ue we

%1189
TUSUBS CLR.TV CLEARS THE SCREEM.

s
it

e ow

UMSUBS+E54
GET.SL GETS THE CURRENTLY-
SELECTED BYTE.

"h us wr B G

HEFHEEFBERBPBEERARBERHEERB D BREEP RIS DRBEBRRE

USER-MODIFIABLE DATA

FREFBBFEEBBEF P B EPEER AP BB LD LR ERB IR BRRBERBRNA

B WE B ua VI us WA wH M WS A% NE uE wE w2 Ma

‘236 BEYOND GAMES

1168
1179
1180
1188
1283
1z1a
1229
1238
1240
1258
1280
1z2va
1289
12389
isza
1318
1326
133@
13403
1359
1269
1379
1388
1338
1429
1419
1429
143a
1449
1458
1488
14789
1458
1483
1588
1519
1529
1538
1549
1558
1563
1578
1589
1588

1509

1519
i62a
1628
1548
1658
1665
16579
1658
1658
1729
1719
1729

1738

1zea

12280 ©a

1Zel @3

1Z82 va

1283 va

1za4 ©a

1zal=

1285 2288

1ZEQ

1ZE8 6Cu8lg G

PTEEY

* = UMSUBS
H
H
H
H
FIELD .BYTE @ NUMBER OF CURRENT FIELD.
H - (MUST BE ©8-6.)
3
REG.A .BYTE B IMAGE OF ACCUMULATOR.
H
REG.X .BYTE @ IMAGE OF X-REGISTER.
3
REG.Y .BYTE 8 IMAGE OF Y-REGISTER,
H
REG.P .BYTE B IMAGE OF PROCESSOR STATUS
H REGISTER.
3
REGS = REG.A
H
SELECT .WORD B POINTER TO CURRENTLY-

s wa e

e ows wn

WE G we WA we W us wr e e

@ ws W e W et W W an W ous we [T] us we

SELECTED ADORESS.

BHEBERFFREXBERFRSEBRBBREENPRRBFES B DR PBIERHSLS

KEYBORRD INPUT ROUTINE

FHEBEBEEEBEEFERLERBEEERBE BRI IEFTH RN RSLRBHHNE

% = UMSUBGHSEY

TKEY JMP (ROMKEY) JSR GETKEY CALLS YOUR
SYSTEM S KEYBOARD INPUT
ROUTIME INDIRECTLY,

237

W

ZBEBLIZ UFDATE

W we CT] ws we ws we oue ws WO ax

EEBALZ MNEXT.F
ABBBL1Z

@ €387

DEas

A263

s05912

€D UPLEXL

PREV.F

UpP.EXZ
H

a8

FEAS1Z INC.SL
nae3d
EEBELZ

-
T owr e
O
A

-
T] wn -
[w]
pen
D
A

238 BEYOND GAMES

JSR

cMp
BNE

InNC
LoR
CrP
BME
oA
TR
RTS

HAEEBEBRBERREBABIIBEESBRFBBLABRRBEXFIFRAEBES

MONITOR-UPDATE

GETKEY

* >
IF.LSR

FIELD
FIELD
#7
UPLEXL
#a
FIELD

CHP #° <

BiHE

nec
EPL
Lra
STA
RTS

BHE
INC
BNE
InNc

RTS

iF.sP

FIELD
LP.EXZ
%5
FIELD

i
c32a IF.SP CMP #SPARCE

IF.CR

SELECT
$45
SELECT+1

#CR
IFCHAR

SELECT
#4+5
SELECT+1
SELECT

FIELD
#2

FHEESRFRBERBRFEBEBEEBEBEBREBIEFEFREFRBERERISE

GET A CHARACTER FROM THE
KEYBOARD.

IS IT THE * > KEY?
IF NOT, PERFORM NEXT TEST.

IF S0, SELECT NEXT FIELD.

IF ARROW WAS UNDER RIGHT-
MOST FIELD, PLACE IT UNDER
LEFT-MOST FIELD.

THEN RETURN TO CALLER.

IS IT THE “<° KEY?
IF NOT, PERFORM NEXT TEST.

IF SO0, SELECT PREVIOUS
FIELD: THE FIELD TO THE
LEFT OF THE CURRENT FIELD.

THEN RETURM

IS IT THE SPACE BAR?
IF NOT, PERFORM NEXT TEST.

IF S0, STEF FORWARD THROUGH
MEMORY BY INCREMENTING

THE POINTER THAT SELECTS
THE ADDRESS TO BE DISPLAYED.
THEN RETURN TO CALLER.

IS IT THE CARRIAGE RETURN?
IF MOT, PERFORM NEXT TEST.

IF S0, STEP BACKWARD THROUGH
MEMORY BY DECREMENTING THE
POINTER THAT SELECTS THE
ADGRESS TO BE DISPLAYED.
THEN RETURN.

IS ARROW UMDER CHARACTER
FIELD (FIELD 237

Z3Z8
2338
2349
2358
2369
2379
2389
2399
2408
2419
2428
Z2438
2449
2458
2468
2478
2483
2489
2568
2519
2529
2532a
2549
2559
2560
2578
zZ580
2599
2698
2518
2629
2533
2648
2850
2660
2678
2580
2699
2780
2719
2728
2738
2749
2758
2768
2778
2789
2756
2808
2818
2228
2838
2848
2859
2860
2878
2388
28388

13ZB

122D
132
1328
1331
1333
1336
1338
1338
132D
1338
1348
1342
1344
1345
1347

1348
1340

134C
1341
1352
135
1358

353
135AR
135D
135
1361
1364
1367
1368
1368

136C

136F
1378

1373

1375
1376
1377

1378
137B

DBlB

H
Ag PUT.SL
[gi=tuls)
43
AE31
RDB512
8509
ADS612
8591l
a8
jatalais]
S1ieg
SE91
68
8569
[=17]

L]
€947 IF.GO
DBz3

5
ACB31Z2 GO
REBZ12
ALB412
48
ADBL1Z
Z3
2B6C13
73
BOGB112
B8EB212
8ca312
58
808412
68

D owr we

8CB512 CALLIT

we owr wa

wn

43 IF.HEX
280513

we uws

3848

A3
63
g8

AEBBL1Z
Dgi4

BHNE

TAY
DA
FHA
Lox
LpAa
STA
oA
57A
TYA
Loy
5TA
5TX
FLA
STh
RTS

chMP
BNE

Loy
LDX
LDA
PHA
LR
FLP
JSR
PHP
STA
STX
STY
PLA
S5TA
RTS

JMe

PHA
JSR

BMI

TAY
PLA
TYA

LD
ENE

IF.GO

TU.PTR
TU.PTR+1
SELECT
TU.FTR
SELECT+L -
TU.PTR+1
49
CTY.PTRY, Y
TU.PTR+1L

TU.PTR

G

IF.HEX
REG.Y
REG.X
REG.P
REG.RA

CALLIT

(SELECT)

BINARY

IF.CLR

FIELD
NOTADR

IF NOT, PERFORM NEXT TEST.
IF 50,

STORE THE

CHERACTER IN THE CURRENTLY-
SELECTED ADORESS.
(PRESERVING THE ZERO PAGE.)

THEM RETURN.

IS IT G FOR GO7
IF NOT, PERFORM NEXT TEST.

IF S0, LORD REGISTERS
FROM REGISTER IMAGES. ..

AMND CALL SELECTED ADDRESS.
HHEM THE SUBROUTINE RETURNS.
SAVE REGISTER VUARLUES IN
REGISTER IMAGES.

THEN RETURN TO CALLER.

JSR CALLIT CALLS THE
CURRENTLY-SELECTED RODREES,
INDIRECTLY.

SAVE KEYBOARD CHARACTER.
IS IT ASCII CHAR FOR B-3 OR

A-F? IF SO0, CONVERT TO BINARY.

IF KEYBOARD CHAR WAS N
-3 OR A-F, PERFORM NEXT
TEST.

FULL KEYECRRD CHARACTER
FROM STACK, WHILE SAUING
BINARY EQUIVALEMT IN A 8ND Y.

18 ARAGW UMLER RDUDRESS
FIELD (FIelD ©37

239

13
i

30 W W w
oMoy

b}

bt s s e e b

[y

) 0) W oo G

I B R I B 7
HWNJDWE O

(RIS 3 Yy I N CY I Bl

0
OO N E D A0S N DH A G
b
v)
s}
W

1,
]

R WS AR S R S I e R %
1) U1 & (3 D) o= 1D

[e o e
T e 300 3

O3 00 03 03 0) D) 1) D) () 10 0) D) O3 RN R RN N M NN R
e

XN

hes

B0

(SN I I I)

1ZAD
13RE
12AF
1388

) W
NN N RN
w3l

]

AN SO ot

b b B e e s

0w W
RN TR IR RN

R

W W W W W W

w G g

Ww W Wweww

AZG3
ig
CEBS12
2EBB12
CA
18FG
sg
apas512
BoEs1Z
&3

E@AL
Lais

Z23aF
43
298412
ZER

BA

ZA

s
25rg
EDAC13
58
BOACL3

2 262013

=1%]

ag

cA
CA
cA
AGB3

18
LEB11Z
a3
LOFS
108112
80E112
62

L4

240 BEYOND GAMES

s
ADRFLD LDX
ADLOOP CLC

.
s

NOTADR

H
H
ROL..SL

3
RGLOOQP

3
IF

-e

we ws e ws

.CLR

ASL
ROL
DEX
BFL.
TYR
orRA
STH
RTS

CPX
BNE

AND
FHA
JSR
ASL
ASL.
ASL
ASL
ANDO
STA
PLA
ORA
JGR
RTS

#3

SELECT
SELECT+1

ADLOOP

SELECT
SELECT

#1
REGFLI

#50F

GET.Si.
a

a

A

A

#%5F8
TEMP

TEMP
PUT.SL

BYTE &

DEX
DEX
DEX
Loy

CiC
ASL
DEY
EPFL
ORA
STA
RTS

PLA
cme

BHE

#3

RGLOOP
REGS, X
REGS.X

#RUBQUT

NOTCLR

R

SINCE ARROMW IS UNDER ADDRESS
FIELD, ROLL HEX DIGLT INTO
ADDRESS FIELD BY ROLLIMNG IT
IT INTO THE POINTER THAT
SELECTS THE DISPLAYED
ADBORESS.

THEM RETURN.

IS ARROW UNDER FIELD 17
IF NOT, IT #MUST BE UNDER
A REGISTER FIELD.

ROLL 4 LSE IN A INTO
CURRENTLY-SELECTED BYTE.

GET THE CURRENTLY-SELECTED
BYTE AND SHIFT LEFT 4 TIMES...«

PUT IT IN CURRENMTLY-SELECTED
ADDRESS AND RETURN.

THE ARROKW MUST BE UNDER A
REGISTER IMAGE: FIELD 3.
4, 5, OR 6.

ROLL HEX DIGIT IMTO
APPROFRIATE REGISTER IMAGE.

RESTORE KEYBOARD CHARACTER.
IS IT RUBOUT? (IF YOUR
SYSTEM DOESN' T HAVE A
RUECUT KEY, SUBSTITUTE THE
CODE FOR THE KEY YOU' LL USE
TO CLERAR THE SCREEN.)

IF IT IS T THE ° CLEAR
SCREEMN KEY, PERFORM NEKT

3488
3422
3563
3518
3523
3538
3549
3558
3563
3578
3582
3598
3568
3618
3628
3538
3648
3659
3558
2678
3628
3859
3768
3718
3728
3738
3740
3753
3I7Ea
3r7a
Irsg
3783
3883
2813
3229
3838
3848
858
3868
3878
3229

=30
3528
3318
3328
39349
3349
3358
3Isea
3978
3988
3328
4287
4319
4829
4533
4848
4359

13C5
13C8

13C8

3CB

13CD
13CE

13CF

13D1

1304

2RE811
=34)

C351 i
nzg4

=34
58

28

82

.o

TR

TCLR

we wr owe wi we

e ar W un we W

291818 OTHER

=13)

-

s we we

we e W us ws en

Wt ws WE wE us ME e WE SF up s WE ue UE wE e wp WE WF we

JSR CLR.TV
RTS

CMP % Q
ENE OTHER

PLA
FLA

PLR

RTS

JSR DUMMyY

RTS

TEST.

IF IT IS, THEN CLEAR THE
SCREEN AND RETURM.

IS IT *Q FOR QUIT?
IF NOT, PERFORM NEXT TEST.

IT IS ‘@ FOR QUIT. THE
USER WANTS TO RETURN TO THE
CALLER OF THE UVISIELE
MONITOR. S0 LET'S DO THAT:
POP UPDATE’ S RETURN ADDRESS.

RESTORE IMITIAL 6582 FLAGS.
VISHMON § RETURN ADDRESS IS
NOW OM THE STACK.

S0 RETURN TO CALLER OF
UVISHON. IN THIS WRY.
UISHMON CANM BE USED BY ANY
CALLER TO GET AN ALDRESS

FRCM THE USER.

REPLACE THIS CALL TO
DUMMY WITH A CALL TO ANY
SUBROUTINE THAT EXTENDS
FUNCTIOMALITY OF THE
UVISIBELE MOMITOR.

THEN RETURN.

FSFEBBSRBERREFXBFEBFEBBI R BRI PR BEABLFTBFESTHH

ASCII TO BINARY

FEESBLEB LR SRR BLE B EEFDILRER AL RS EBFE R ESDREEHES

IF ACCUMULATOR HOLDS ASCII
8-9 OR A-F, THIS ROUTINE
RETURNS BINMARRY EQUIVALEMT--
OTHERWISE, IT RETURNS %FF.

241

4953
4873
4228
499
4163
4118
4129
4128
4143
4159
4168
4179
4180
4198
4298
4218

242 BEYOND GAMES

305
1306
1202
130AR
130nC
120E
130
1382

3E4
13E5
132EY
1389
13EB

13EC
13EE

338

E338
STDF
csan
S8BE
£aa7
Ca18
BBBS
38

o=t s}
B@B3
A3FF
€8

RZOY
69

BINARY SEC

BAD

*
GOCD

spC
ECC
CHP
BLC
SBC
Cip
BCS
SEC
CHP
BCS
Lo
RTS

LDX
RTS

#$328
Brl
FHOA
GOOD
#7
%18
EAD

H#¥BA

GooD
F#5FF

#9

Appendix C4:

Print Utilities

MR WS AY B uE we Ws WY wE uE we WS wd w6 W6 we WA N U W WA WA ue

wh WE ub Wl ue wr we

WE WA e M WMe s WA we wE wa M

T L R R T T

APPEMDIX C4: ASSEMBLER LISTING OF
PRINT UTILITIES

SEE CHAPTER 7 OF BEYOMD GAMES: SYSTEMS
SOFTHARE FOR YOUR 6592 PERSOMAL COMFUTER

FRBEHFBRFBEFRERBER BB RBFESBBRRREBBESERBFRBHRD
CONSTANTS

FFHSLEEBLIFLPIEEBEFEF BRI BB BB AR L EREFFEIBEEE RIS

CR = $8D CARRIAGE RETURNM.

ETX = SFF THIS CHRRACTER MUST
TERMINATE ANY MESSAGE STRING.

LF = $8A LINE FEED.

OFF = @

ON = $FF

e e S s ettt 2

EXTERMAL ADDRESSES

FEBEBEPELPRAERFRSERSEE BB IR SR BEP AP BRRERERERS

245

536
698
610
629
630
540
650
658 1809= PARAMS = $1998 ADDRESS OF SYSTEM DATA BLOCK.
678
550
590
788 1B8C= ROMPRT = PARAMS+SBC
710 POINTER TO ROM ROUTINE THAT
728 SENDS CHAR TO SERIAL OUTFUT.
730
740
759
760 198A= ROMTUT = PARAMS+$2A
778 POINTER TO ROM ROUTINE THAT
780 PRINTS A CHPR TO THE SCREEN.
758
bzl
819
829 1686E= USROUT = PARAMS+SBE
839 POINTER TO USER-WRITTEN
849 CHARACTER OUTPUT ROUTINE.
850
e65a
87a
g2
898 1168= TUSUBS = $1199
908 11B6= ASCIL' = TUSUBS+$B6
218
gz@
938
949
950 1280= UMPAGE = $1200 UISIBLE MONITOR STARTING
96a. PAGE
a7
588 1285= SELECT = UMPAGE+S
998 1z94= GET.SL = UMPRGE+$34

1689 130D= INC.5L = UMPAGE+$1BD

1210

1620

1838

124@

1p59

1668
1a78
1289

1998
1198

1110
1128

113@

1148

1158

1168

e s 9T we we us ws ws wp WS wa ws we we ue ws

we wE WS s Wl ws

ws we we

- we ows W

FHBREEFESEREEBEFLERBRBEBLADHABBHEUB B FREREEERL

UVARIARBLES

FABEBELFEBERBAPERBBRBFEBRBERBRShbbbb bR Ehnds

WE MI wE WS ws ue wE WA R we wa W

246 BEYOND GAMES

P bt o e Pt e
U 3o
WIS B

[
~}m
ey I

— e b

P e ol v

1528
167G

[=xala]
1853
jgula]
1718
17Z3
17323
1740

1484

1483
142A
1440

140E

1419

1413

fale]

[2]7]

D
B8
<3
(RN
-
ES

%

ju]
=

1

+ = $1450

PRINTR .BYTE

we 7T} s

TUT LBYTE

i
USER .BYTE

i
CHAR .BYTE

{T] we we ws we ue

REFEAT .BYTE

[T] ws ws we we

-

tF.X WBYTE

i1 wr

RETURN WORD

Cowr our N wr @R e we M Ue wn we WT oWl uE e we WO G ur us

OFF

[ely]

OFF

]

TUT.ON LA #0N
STH TUT
RTS

O we wr we e owe we

-t

TOFF LDR #OFF

STA TUT

RTS

PRINTER OUTPUT FLAG.

TUT OUTPUT FLAG.

, OUTPUT FLAG FOR USER-

PROVIDED OUTFPUT SUBROUTINE.

CHARACTER MOST RECENTLY
PRINTED BY FPR.CHR.
CHAR=07 MEAMS PR.CHR HAS
NEVER PRINTED A CHARACTER.

THIS BYTE IS USED AS A
COUNTER BY SPACES, CHARS,
AND CR.LF5.

DATA CELL: USED BY FR.MSG.

THIS POINTER IS USED BY
PUSHSL. AND FOP.SL.

DEVICE SELECT SUEROQUTINES

F5PEHAVSERIIEERBEABRASERLRB BB FEBRERLRBER BB RS

SELECT SCREEM FOR OQUTRUT
BY SETTING ITS DEVICE FLAG.

DE-SELECT SCREEN FOR
COUTPUT BY CLEARING ITS
DEVICE FLAG.

247

1758
1759
1778
1788
1758
1808
1818
1829
1833
184@
1858
1869
1879
1880
1838
1598
1918
1929
1939
1948
1559
1568
1973
1983
1998
2026
2018
2028
ze3@
2043
2050
2668
20878
2889
2258
2129
2118
2120
2138
2149
2158
2159
2178
2189
219@
z28a
2218
2228
2z3@
2249
2259
2269
2272
2288
2298
2309
2319
z329

1414
1416
1419

1418
141C
141F

14za
1422
1425

1426
1428
142B

142C
142ZF
1432
1435

1436
1429
143C
143F

ASFF
208814
[=3%]

yiatalz]
snea14
=14)

ASFF
8D@214
68

A3Za
202214
=34

280314
281414
ZBZa14
235]

20BE14
281Aal14
282514
=15]

248 BEYOND GAMES

0

A we we we oar we

e e wr e e

-ON

PR.OFF

we wh wa WP we

USR.ON

U

() s ws we wn wn

ur s WA W ws

RQFF

ALL..ON

a

™ we wr as we ae

@ we we ws W

LOFF

t DA #ON

STA
RTS

LoAR
STAR
RTS

LDA
sTa
RTS

LoA
STA
RTS

JSR
JSR
JSR
RTS

JSR
JER
JSR
RTS

FPRINTR

#OFF
PRINTR

FON
USER

#OFF
USER

TUT.ON
FR.ON
USR.ON

TUTOFF
PR.OFF
USROFF

SELECT PRINMTER FOR OUTPUT
BY SETTING ITS DEVICE FLAG.

DE-SELECT PRINTER FOR OUTPUT
BY CLEARING ITS DEVICE FLAG.

SELECT USER-WRITTEN
SUBROUTINE BY SETTING
USER’ S DEVICE FLAG.

DE-SELECT USER-KWRITTEN
OUTPUT SUBROUTINE BY
CLEARING ITS DEVICE FLAG.

SELECT ALL OUTPUT DEVICES
BY SELECTING EACH OUTPUT
DEVICE IMDIVIDUALLY.

DE-SELECT ALL OUTPUT DEVICES
BY DE-SELECTING EACH ONE
INDIVIDUALLY.

2338
2348
2358
2369
2374
2359

2398
2483

2418
2428
2438
2443
2458
2469
2479
2489
2433
2588
2514

2528

2539
2548

2558
25882
2578

258d
2599

zZ683
zZ61a
2528
26349
2648

2659

2668

2673
2688
2898
2783
2718
2728
2739
2748
2758
2768
2778
2788
2758
2808
2818
2829
2838
2849
2858
2868
2878
2888
2828
25829

1448
1442

1444

1447
144A

144C
144F

1452
1455

1457
14580

1450
1469
14862
1485

1468

1469

148C

C352a
Faz4

€12314

AkaL14
Fags

AD2314
295314

ADBB14
Fgaes

ADE314
288C14

ADaz14
s

ADas14
Z2BEF1l4

E9

Me MR ws WP Ge WE VO We W us W us we W

ERFEBEFEEBEBEEERBERIEEIREP RSP I LRI DS LRSI BE R4 %

A GENERAL CHARACTER FRINT ROUTINE

FHBFEREFEEESELS LR L LFBBEERPL S REREB A FhhbhebasE

PRINT CHARACTER IN ACCUMULATOR

ON ALL CURRENTLY-SELECTED OUTFUT DEVICES.

PR.CHR CMP

T e we e

-
we TT] we ous s

s

e B us W we @ e 5 ws ap

PR

BEQ

STA

LoA
BEQ

LoR
JSR

Loa
BEQ

LoA
JSR

LoA
BEQ
Loa
JSR

RTS

ECBAL1Y SEMD.1 JHMP

s
6CBC18 SEND.2 JMP

+a
EXIT

CHRR

TVT
IF.FR

CHAR
SEND. 1

PRINTR
IF.USR

CHAR -
SEND.Z2

USER

EXIT

CHAR
SEND.3

TEST CHARACTER.

IF IT'S A NULL, RETURM
WITHOUT PRINTING IT.
SAVE CHARACTER.

IS SCREEN SELECTED?
IF NOT, TEST NEXT DEVICE.

IF S0, SEND CHARACTER
INDIRECTLY TO SYSTEMN'S
TUT OUTPUT ROUTINE.

IS PRINTER SELECTED?
IF NOT, TEST NEXT DEVICE.

IF S0, SEND CHARACTER
INBIRECTLY TO SYSTEM' S
PRINTER DRIVER.

IS USER-WRITTEN OUTPUT
SUBROUTINE SELECTED?
IF NOT, RETURNM.

IF 50, SEND CHARRACTER
IMDIRECTLY TO USER-MRITTEN
SUBROUTINE.

RETURN TO CALLER.

VECTORED SUBROQUTINE CALLS

{ROMTVT)

(ROMPRT)

249

23918 H
2928 146F GCAE1Z SEND.3 JMP (USROUT)
2338
2549
2959
59
2379
2983
2999
3828
919
3029
3038
340
3650
3858
3679
3858
3399
3108
3110
3120
3138 1472 A98D CR.LF LDA #CR SEND A CARRIAGE RETURN
3148 1474 284014 JSR PR.CHR
3159 1477 ASGA LDA #LF AND A LINE-FEED TO ALL
3168 1479 234014 JSR PR.CHR CURRENTLY-SELECTED DEVICES.
3173 147C 69 RTS THEN RETURN.
3183
2199
32008
3219
32298
3239
3246
3258
3269
327v8 147D AS20 SPACE LDA #%20 LOAD ACCUMULATOR WITH AN
3280 147F 204014 ISR PR.CHR ASCIT SPACE AND PRINT IT.
3236 1482 69 RTS THEN RETURN.
33683
3318
3329
3339
3348
3358
32360
3379
3389
3320
3429
2418
3428
3438
3449
3459
3468
3478
3488

PYEET

FERFBPERBBLLBRBEREBRE B BB EF R A B IS TR RBHABRBSEES

SPECIALIZED CHARACTER OUTPUT ROUTINES

BEEEERSBFEPERRBREBEB P BRI EPERBRRRABKBRFLLS IR 4H

we as wr e W we as

AN we Wi ws we

PRINT A CARRIAGE RETURN-LINE FEED

PRINT A SPACE:

T ows e wn me wn o ws s we

e we WS ue ws W we

FAFEEBEERBEEREEERFEIRBPEREFRE LR BB RS R BB L ESES

PRINT BYTE

BEFUEFRFHIFBEFFEBEEEFIPIETBRA BRI BRRBRLBLBRRS%

® we 9% uy W wa ws BT we we

.250 BEYOND GAMES

3490
3509
3518
352@
3538
3548
3558
3569
3579
3580
3599
3624
3618
36208
3638
3648
3650
3668
3670
2689
36393
3763
3718
3728
3738
3740
3758
3768
3778
3780
37S0
3839
3819
38208
3839
3849
38508
3859
3879
3863
3890
2968
3918
3328
3338
3349
2559
3968
3378
3989
3590
4358
4519
44328
4930
4840
4950
4008

1483
1484
1485
1486
1457
1488
1488

148E
148F
1492
1485

1496

1458
149B
149C
149F
14A1
144

14A7
14R8
14A3

43
4A
4A
4R
4A
ZBB511
204814

68
28B511
284814
[=14]

A9Za

BEB414
48
AEB414
FaaR
Ceg4l4
264814

68
18
9grg

.- W ws wE W an we

PR.BYT

SPACES

e we WA ws we ws WE WA WE W6] wa we WE UE Wk we ws WS wp ws U6 we WS uB WO ws WS wa

CHRRS
RPLOOP

PR.BYT OUTPUTS THE ACCUMULATOR, IN HEX,

TO ALL CURREMTLY-SELECTED DEVICES.

PHA SAVE BYTE.

LSR A ©7 DETERMINE ASCII FOR 4 MSB...

LSR A

LSR A

LSR A

JSR ASCII ... IN THE BYTE.

JSR PR.CHR PRINT THAT ASCII CHAR TO
CURRENT DEVICE(S).

PLA DETERMINE ASCII FOR 4 LSB

JSR ASCII IN THE ORIGINAL BYTE.

JSR PR.CHR PRINT THAT CHARARCTER.

RTS RETURN TO CALLER.

HEBEBESRERBEREPBBRBENF P AP BB B EL SRS A PSP 5B L L RS

REPETITIVE CHARACTER OUTPUT

EBRBRERPEBREPERBRSBEDDIFERRRXFBREF R EREB L DESE

PRINT X SPACES:

LDA #%29 LOAD A WMITH ASCII SFACE.

PRINT IT X TIMES:

PRINT X CHARACTERS:

STX REPEAT PRINT CHAR IN A X TIMES.
FHA SAVE CHAR VO Bt REPEATED.
LDX REPEAT REFPEAT COUNTER TIMED OUT?
BEQ RPTEND IF 50, EXIT. IF NOT,

DEC REPERAT DECREMEMT REFPEAT COUNTER.
JSR PR.CHR PRINT CHARRACTLR.

PLA RESTORE CHRRACTER TG A.
CcLC LOOFP RBACK TO PRINT IT
BCC RPLOOP AGAIN IF NECESSARY.

251

4879
4089
409@
4180
4118
4120
4138
4148
4150
4160
4170
4188
4198
4209
4210
4228
4238
4z49
4251
4268
4278
4288
4z58
4398
4310
4228
4338
4349
4359
4359
4370
4389
4399
4480
4410
4420
4439
4443
4459
4450
4475
4488
4498
4589
4518
4529
4538
4548
4559
4568
4576
4589
4550
4667
4619
4628
4536
4549

14AB
14AC

14AD
1488
1483
14B5
14B3

14BB
14BC

14BE

14BF

14CZ
14C4
14CS
14C7

14C8

14CB
14CD
14CF

1401
1403
14055

&8 RPTEND
50

we W ws uE ws uwy

BEB414 CR.LFS
AEB414 CRLOOP
Fegg

CEB414

287214

s

18
@Fz

SH % wr wa wr W s we wE wa WY M YE W we wr wi w8 ME we 96 we we

8EBS14 PR.MSG

ws o

B5@1

R183
CSFF
Feac

we

Fega
Dagz
Fegl

252 BEYOND GAMES

PLA
RTS

CLEAN UP STACK AND
RETURM TO CALLER.

FRINT X MEWLINES

5TX
LDX
BEQ
DEC
JSR

CcLC
BCC

RTS

REPEAT
REFEAT
ENMDL.CR
REPEAT
CR.LF

CRLOOP

INITIALIZE REPEAT COUNTER.
EXIT IF REPEAT COUNTER
HAS TIMED OUT.

DECREMENT REPEAT COUMTER.
PRINT A CARRIAGE RETURN
AND A LINE FEED.

LOOFP BARCK TO SEE IF DONE
YET.

RETURN TO CALLER.

HEFEEEEEFERBEBESRLSFBRLERBEBLEL P FFFBRRLEREHE

PRINT A MESSAGE

FEHPFEHSSBEEEREDREFLBILRBE DXL RIS R IR B R RE B RERDBH

Xth POINTER IN ZERO PAGE
POINMTS TO THE MESSRGE.

8TX

LA
PHA
LbA
PHA

L.OX

LnA
cHMP
BEQ

INC
BNE
INC

TEMP. X

1.X

8,x

TEMP.X

(3,x?
#ETA
FMSGEND
A, K

MEXT
1.X

SAVE X REGISTER, WHICH
SPECIFIES MESSAGE POINTER.

SAVE MESSAGE POINTER.

RESTORE ORIGIMAL X, S0 IT
SPECIFIES MESSAGE POINTER.
GET MEXRT CHARAKRCTER FROM
HMESSAGE. IS MESSAGE OVER?
IF S0, HAMDLE END OF MESSAGE.

IF NOT, INCREMENT FOIMTER.
SO IT POINTS TO NEXT
CHARACTER IN MESSAGE.

4E88
4868
4878
480
4890
43991
4g1m
4529
4532
4343
43954
4553
4379

5169
5118
5129
S1z5
S48
51543

1407
140R
T8 1408

L4E4
14E%
14E8

14E7

14E8
14EB
14EE

14F1

Lar4
14F7
14Ff
14FC
14FE
1581
1582

=)

©TMME D~

fon

o,

PR e pe
momdmnym
[IS B B A

254314
18

S8ER

5
13

mm o mm
SRR RGEY]
&
-

=12

MEXT

" uy

s
FSGEMD

TH ws WA we wh s WE WA ws B ws WA g we e e WE WS us WP wg

[

PRIMT:

-.

3

MEATCH

» e

EMDIT

JSR
CLC
BCC

PLA
sTA
PLA
STA
RTS

PR.CHR

LOOP

8,x

1,X

PRINT THE CHARACTER.
LOOP BACK FOR NEXT
CHARACTER. . »

RESTORE ORIGINAL MESSAGE
POINTER. :

RETURN TO CALLER, WITH
MESSAGE POINTER PRESERVED.

BHFPEHEBEEPLBFAUE BB REI RSB EELRSHIE LB LS REREHBEHE

PRIMNT THE FOLLOWING TEXT

PLA
TAX
PLA
TAY

JSR
STX
STY

JSR

JSR
JER
cmP
BEG
JER
CLC
BCC

LD
Loy
J5R
TVA
FHA
™=

FHA

PUSHSL
SELECT
SELECT+1

INC.SL

INC.5L
GET.SL
HETY
ENOIT
FR.CHR

MEXTCH

SELECT

SELECT+1
FOP. 50

PEFBERBFFEFFEPEEEEPIPPEBEREHERI RS LRBBBLRBEHS

PULL RETURN ADDRESS FROM
STACK AND SAVE IT IN X AND
Y REGISTERS.

SAVE THE SELECT POINTER.
SET CELECT=RETURN ADDRESS.

ADVANCE SELECT TO 5TX.

SELECT NEXT CHARACTER.
GET IT.

IS IT END OF MESSAGE?
IF 50, RETURM.

IF NOT, PRIMT CHRRACTER.
LO0OF BACK FOR HEXT
CHARACTER. . .«

RESTORE SELECT FOINMTER.
FUSH ADDRESS OF ETX ONTO

=+« THE STACK.

253

5239
£248
5250
5260
5278
5288
5299

5200
5319
s328
5330
5348

5359
5350
5378
5289
5332
5420
5412
5420
5430

5440
5458
5469

5470
5480
5438
€508

5510
5520
55306

5548
5558
5560
5578
5588
5590
5520
5518
5628
5638
5648
555@

5660
5578
5650
5638
5788
5718
5720
5730
5740
5752
5762
5778

5789
5798

5828

1511

1512
1513
1516
1517

1518
1510
151E
1521

1522
1525
1526
15239

15z2A

1528
152C
152F
1538

1523
1534

69

68
806514
58
818714

ADBE1Z
48
ADgs1z
48

ADA7 14
48
ADBB14
43

54}

€8
£0a614
68
8DGT 14

68
BDB512

254 BEYOND GAMES

P

W WY aE ws MY ws ua W Wi ad

“s us we wu WE ui an W

“s ws a (C we we

RTS

RETURN (7O BYTE IMMEDIRTELY
FOLLOWING THE ETX.)

FREXFEERRERABBRFRBEFABEFBABIEEESRSBPAEBAFEHS

SAVE,

RESTORE SELECT POINTER

ZAEBEESBRBEERRBBHERBERELBHISSRBRRBPREFSDEARBRES

SHSL

P.SL

PLA
5TA
PLA
sTA

LpAa
PHA
LoA
PHA

LoA
PHA
LDA
PHA

RTS

PLA
STA
PLA
STA

PLA
STA

RETURN

RETURNTL

SELECT+L

SELECT

RETURN+1

RETURN

RETURN

RETURMN+1

SELECT

PULL RETURN ADDRESS FROM
STACK AND SAVE IT IM RETURN.

PUSH SELECT POINTER ONTO
THE STARCK.

FUSH RETURM ADDRESS BACK
ON THE STACK.

RETURN TO CALLER. CALLER
WILL FIND SELECT ON STACK.

SAVE RETURN ALDRESS.

LOAD SELECT FROM STRCK

5818 1537
5520 1538
5530
5840
5558 1538
5850 153E
5878 153F
5858 1542
E559
5909
5918 1543
5920

€8
8p@612

AD8714
48
ROUGE14
48

[=5]

. ws

PLA
STA SELECT+L

LDAR RETURN+L
PHA

L0A RETURN
PHA

RTS

FLACE RETURN ADDRESS BACK
O STRCK.

RETURN TO CALLER.

255

Appendix C5:

Two Hexdump Tools

257

15
z25
=3
40
=0
59
7a
£8
ag
103
119
1zae
139
148
159
1698
179
189
133
249
219
228
238
2483
259
269
278
ze9
229
soa
31@
323
328
343
359
368
373
3c8
398
409
419
429
439
443
450
468
473
450
423
sna
519
5za
533
549
559
550
sve

a89R=

RaTF=

B3FF=

WE wh ws WA AE wa W ua ws wE We WS WS wh WS wa W w4 WE we @y WS un wd us WS we W we

- ME wd 9T e ws

WE A5 ws Ws wr WA WS ws WS ua wE WE s

AFFPENDIX CS5: ASSEMBLER LISTIMNG OF

THO HEXDUMP TOOLS

SEE CHAPTER 8 OF BEYOMD GAMES: SYS%EMS
SOFTWARE FOR YOUR 5582 PERSOMAL COMPUTER

BY KEM SKIER

FEESBEABIBBEEERBRERIRBFERBBBRLFHIHERBBPIREHS

CONSTANTS

FHHEEBESRBPEEIEBEXRBBRESBEES LI R L BBRRBEFREBER

CR =

LF =

TEX =

ETX =

38D

SOAR

$7F

SFF

CARRIAGE RETURN.

LINE FEED.

THIS CHARACTER MUST START

ANY MESSAGE.

THIS CHARACTER MUST END
ANY MESSAGE.

259

528
€99
j=gara}
618
Ez8
=514
543
e54
EBY
67E
B33
&84
Kg51a]
7vig
TeG
T8
743
TEE
(451
voa
7E4
759
j=2apa)
619
25
a48
8655
BED
873
889
238
and
g1a
829
928
949
858
SEZ
|7e
jS1=1a]
jei=ia}
1leaa
imla
inzg
1833
1845
1858
19ea
iaey
1086
1838
1168
i1ia
1128
113@
1148
1159

260 BEYOND GAMES

7

1
141a=

4

v

14

WH an M e WE s ws VR wp WE s Ws WY Wl ue ws

s we

ws

e ar

we us we

We ME we ME we ME aE A WE ae W

BEELERBEEAE LRI BLBEL bR RBRERBIERBARBRE BRI R bS5

EATERNAL ADIRESSES

FHBBBEESLGSEBRERFFESEFLRFPEBBIBBRRFBER BB LAAEE

TUSUBS=%$1189 STRARTING PAGE OF DISPLAY
CODE.

CLR. TU=TUSURBS

ASCII =TUSUBS+$EG

UMPRGE=$1269 STARTIMNG FAGE OF VISIEBLE
MONITOR CODE.

SELECT=UMPAGES

UISHON=UMPAGE+T

GET.SL=UMFAGE+$34

IMNC.SL=UMPAGE+$18D0

PRPAGL=%$1489 STARTING PAGE OF PRINT
UTILITIES.

TUT. ON=PRPAGE+D

TUTOFF=PRPAGE+S$BE

FR.ON =PRPAGE+%14

PR.OFF=FRPAGE+S 1A

PR.CHR=PRFAGE+$43

CR.LF =PRPAGE+$7Z

SPACE =FRPAGE+$7D

SPRCES=FRPAGE+$S6

PR. BYT=PRPAGE+3E3

PRINT: =FRFPAGE+SE4

PUSHSL=FRPRGE+$112

POF . SL=PRPAGE+%1ZB

FEEGPFESEEFSF LRI S EREERSHE RS I EFRIRR R RS I BRE SRS

UARIABLES

1559

1558

1551

1562

1654

1557
1558
1550
1563
1563
1585

1563
1568

156E

1571

2028

FFFF

& 89

s we we

UNTR

£ us un 8 “ r oue G we we

rd

MLNS

I owe wr ue

n

m
s ut e T o

3
COLUMN

we WP e W

WA WR wr W W us us wE we w

DUMP

s

DUMPLN

*=51550

BYTE B

-BYTE 4

WO

WORD SFFFF

RD &

-BYTE B

ISR
LDA
STA
LA
AMND
STHA

JSR
JESR

JSR

JSR

TUDUMP

TUT.ON
MUFMLMNS
COUNTR
SELECT
#%F8

SELECT

CR.LF
CR.LF

FR.ADR

CR.LF

HhBHBNRKERBEFEBRBRBEERERBRLBHEPRBSHRBIIBREIRES

THIS BYTE COUNTS THE LINES
DUMFED BY TVDUMP.

NUMBER OF LINES TQ BE
DUMPED BY TUDUME.

PCINTER TO START OF MEMORY
TO BE DUMFED BY PRDUMP.
POINTER TO LAST BYTE TO
BE DUMPED BY PRDUMP.

DATA CELL: USED-BY PRLINE

o R e e

HEFERIBBFERPEETFAELLBRBERFEBBR SRS BEREFEFTESHbHF

SELECT TWT AS CUTPUT DEVICE.
SET COUNTR TO NUMBER OF
LINES TO BE DUMPED.

SET SELECT TO BEGIMNMING OF
A SCREEM LINE, BY ZERCING
3 LSB IN SELECT.

SKIP THO LIMES ON THE
SCREEM.

PRINT THE SELECTED ADDRESS.

ADUVANCE TO A NEW LINE ON
SCREEM. (NOT MNEEDED ON

261

1749
1758
17609
1778
1788
1728
15986
1818
1828
1838
1849
1858
1868
1876
1889
18306
18869
1319
1829
1538
1944
1958
1969
1879
15c8
1958
2808
2819
2828
2038
2849
z2858
=]
2678
2883
2398
2198
2119
2179
2134
2149
2158
21698
zZ17a
2189
2199
2298
2219
2228
2239
2240
2258
2268
2278
22808
22998
2399
2318

1570
1588
1582

1584

1587
158A

158C
158E

1591
1584

1596

15389

T IT)

H
207D14 DMPBYT JSR

2038A15

288013

RDB51Z
2867
DBFo

207214

ADBS512
asial

pea3
287214

CES@15
pns

208E14

59

- ue e w3 ws T

ws

wn

3
H
IF

s ws we wr “ ae

ws wn wn B

Wt ws s WwE W wa W ug wn ¥ ws W

JSR

JOR

LoA
AarDb
BME

JSR

LA
AND

BNE
JSR

"DONE DEC
BNE

JSR

RTS

SPACE

DUMPSL
INC.SL
SELECT

#87
DiPBYT

CR.LF

SELECT
#5807

IFDONE
CR.LF

COUNTR
DUMPLN

TUTOFF

SYSTEMS WITH SCREENS MORE
THAN Z7 COLUMNS WIDE.)
PRINT A SFACE TO THE SCREEM.
DUMP SELECTED BYTE.

SELECT NEXT BYTE.

IS IT THE BEGIMMIMG OF f

NEW SCREEN LINE (3 LSB=27)
IF NOT, DUMP NEXT BYTE...

IF S0, ADUANCE TO A NEW LINE
ON THE SCREENM.
DOES THIS ADDRESS MARK THE

BEGINNING OF A NEW HEX LINE?
(4 LSB = 87)

IF SO0, ADUANCE TO A NEW
LINE ON SCREEN.

DUMPED LAST LINE YET?
IF NOT, DUMP NEXT LINE.

DE-SELECT TUT AS OUTPUT
DEVICE.

RETURN TO CALLER.

#*****#%*%i****&*%******&#%**%#5*5%5%#*#****

puMP SELECTED BYTE

ﬁﬁ#**%*%%%%*%%#*%******#*%%%*#***%#%*##ﬁ%#i**

159A 209412 DUMPSL JSR

1530
15A2

213314
€8

262 BEYOND GAMES

JSR

RTS

GET.SL
PR.LEYT

GET CURRENTLY-SELECTED EYTE
GMD FPRINT IT IN HEX FORMAT.
RETURN TO CRLLER.

NN N NN DMN NN
0) W W W
aom b

[I R A R S A B A RS

LW o U

0oy

2458
2469
2478
z24828
Z458
2589
2519
2523
25326
2549
2558
2560
2574
2529
2551
astala]
2618
2624
2639
2648
2ESA
ZEER
2578
2588
2653
27an
2719
27Z8
2734
2748
2758
2753
2778
2723
2738
2888

1SA1
15A4
1587
1508
15AD

1SAE

1581

3 1584

15E7

1SED
15C8

AN DN

2acals PRDUMF

Z2BESLS

20R317
261414

ZBEELS

284217
1ere

-

H

] er we WE we @ e 91 WS ar w3 us W wr wE %O ws WP e e e

aE e 9T ua B8 ous ae

A we B us as ue as

us e ws

3¢ wa we

\LOOP

HHEREPBSESBBEFEBELERRRP RS BB BERBEPBRBEFRRBARBHE

PRINT SELECTED ADDRESS

KPFESEEREBEBEBFFEBRFIFEEBEEPFBSIRBRBRBREIHES

.ADR L0A SELECT+1 F1IRST PRINT THE HIGH BYTE...

JSR PR.BYT
DA SELECT
JSR PR.BYT
RTS

... THEN PRINT THE LOM BYTE.

HEEEFEFBABEERBFIREPEREFSBBEIBRLERBERBREPDBEHES

PRINTING HEXDUNMP

SESERSERBEFEREBEBERSEREES SRS B rr o R RE SR RKEESE

JSR TITLE DISPLAY THE TITLE

JSR SETARDS LET USER SET START ADDRESS
AND END RDDRESS OF MEMORY TO
BZ DUMPED.
(SETADS RETURNS W/SELECT=EA. D

JSR GOTOSA SET SELECT=GA.

JSR PR. O SELECT PRIMTER FOR OUTPUT.

JSR HEARER OUTPUT HEXDUMP HERDER.

JSR FRLINE
BFL. HXLOOP

DUMP ONE LINE.
DUMPED LAST LINE? IF NOT,
DUMP MEXT 1.INE.

263

2999
291m
2320
z939
2349
z958
2952
2978
2958
2998
Elulsl
3818
320
3030
3943
3953
2068
3079
3282
3898
3108
3110
3128
3138
3140
3150
3180
3178
3180
31isz
3200
3260
azes
3282
3228
3289
3280
2200
3260
3288
3200
32008
3268
3208
3268
3289
2288
3zow
3299
3288
3210
3228
3239
3241
3259
3260
3278
3283

15C2 297214

15Cs

isca

15C8
16CC
15CF
1502

1503
1504
1505
1505
1557
ispe
1503
1508
1SDE
150C
150D
1508
180F
1589
1561
1EE2
15E3
1584
1SES
1585
1SET

1568

ISR CR.LF IF S0, GO TO A NEW LINE.
¥
201A14 JSR PR.OFF DE-SELECT PRINTER FOR OUTPUT.
’
59 RTS RETURN TO CALLER.
3
H
3
H
3
H
H
H
3
$
: BRFBEREFERPRRESEAREBERBREREBFREFFEBRBPEBIISD
£
3 PRINT THE HEXDUMP TITLE TO SCREEN
’
HEEZ T T T2 e Lk L Sl
H
’
H
2@@sll TITLE JSR CLR.TY CLEAR THE SCREEN.
200814 JSR TUT.ON SELECT SCREEM FOR OUTRUT.
ZBE414 JSR PRINT: OUTFUT THE FOLLOWING TEXT:
TF LBYTE TEX TEXT STRING MUST START
; WITH A START OF TEXT CHAR.
B0 .BYTE CR,’ PRINTING HEXDUMF’ ,CR,LF,LF
58
52
43
4E
54
49
4E
47
2@
48
45
s8
44
55
4p
52
ap
@A
@A
FE .BYTE ETX TEXT STRING MUST END WITH
; AN END OF TEXT CHARACTER.
59 RTS RETURM TO CALLER.

264 BEYOND GAMES

e wr we an ws

3298
3363
3318
3322
3338

249
3359
3388
3378
3384
3239
3428
3418
3428
3433
3443
3458
3469
3479
3480
3458
3438
3430
3498
3489
3488
3488
3498
343¢
2482
3488
3489
3489
3458
3438
3459
34583
3458
3459
3498
3489
3439
3488
589
s8R0
2585
3589
3584
3589
3583
3589
3589
356y
3568
3528
3583
3584
3519

15E8
18EC
15EF
15F8
15F1
1sFZ2
15F3
1574
1S5FS
15F5
1SF7
1678
15F8
1EFA
15FE
18FC
15F0
15FE
iSFF
1588
16881
1682
1863
184
1685
1885
1897
1688
1683
188A
152
168C
1590
168E
168F
1518
1511
112
1613
1614
1615

2B9814 SETADS JS5R TUT.ON
ZOE414

TF
a0
(73]
€3
45
S4
z8

WS we WE wE WA wr UE we AR VT Ul W 4l wn WE AT W

FRHBEBEEBREFFFEBEPERHRERFBIEIFEBESSRRLEF SRS
LET USER SET STARTING ADDRESS AND
EMD RDDRESS OF A BLOCK OF MEMORY:

FEHRPREFFRBFFERERBLBIPABFHLEBPBBFIEREBRBFHIRHE

SELECT SCREEM FOR OUTPUT
JSR FPRINT: PUT PROMPT ON SCREEN:
LBYTE TEX

.BYTE CR,LF,” SET STARTING ADDRESS ~

.BYTE *ANMD PRESS "Q°.7

LBYTE ETX

265

@
il

O 1) W oW W
0o Mol i
S 8~ W

[ARONaND]
mo @I a J
L) N
IR I B B R B R

0 W W W W
D m
SRR IR RS

ay M 9
mo=) W

3656

37206

VYA

fo

e T el o
AOMmm TP H IR

W 0w w0
MO mDIww-de

[y

162F
1549
1641
1642
1643

1644

298712

we we owr

MY ue gr W WE MR wp an W WO wa wE we WP

JSR VISMON

JSR SAHERE

zpa814 SET.EA JSR TUT.CN

Z2BE414
TF
a0
B8R
53
45
54
29
45
4E

3 44

29

45
53
53
28
22
51
22
ze
FF

2Ba7iz

266 BEYOND GAMES

JSR PRIMT:
.BYTE TEX

CALL UISIBLE PMOMITOR, SO
USER CAN SELECT START ADDRESS
OF THE BLOCK.

SET START ADDRESS (SA)=SELECT

HAVING SET THE START ADDRESS,
SA, LET'S SET THE END ADDRESS,
£A.

SELECT SCREEN FOR OUTPUT.
PUT PROMPT ON SCREEN:

.BYTE CR,LF,’ SET END ADDRESS

.BYTE ‘' AND PRESS "Q"." ,ETX

JSR VISHMON

LET USER SELECT END RDDRESS.

520
3849
3852
3260
3878
888
3859
3999
3918
3928
39538
3549
3358
3368
3979
3980
3sse
4z88
4619
4828
4@38
4840
4259
4958
4879
4352
4859
4192
4118
4129
4128
4143
4148
4149
4149
4149
4140
4148
4143
414p
4149
4149
414m
4148
414
4150
4158
4158
4153
4158
4158
4150
4159
4158

1647
1648

| 1648

1B4E
1659

1652
1655
1658

165A
150
15€2
1663
1866

1867
1BEA
1660
16782
1873

1874

1677
1673
1578
167R
1678
167C
1670
1B7E
1E7TF
1684
1681
168z
16832
1684
1885
1688
1687
1628
16832
1688
1688
168C
188D
168K

28
ACBS12
CDE315
SBZ24
Loes

ADBS12
CD5Z21S
Seln

ADZS51Z2 ERHERE

BOS51S
RDBS512
805415
59

3
ADBEL1Z SAHERE

2u531s
ADBS1Z
2nsZis
[534)

ZUE414 TOOLOW

TF
it
2A
BA
af
2o
45
52
52
4F
52
21
21
21
29
45
4E
44
23
41
44
44
52
45

we wz we ae

“n wa ws we

° we we w3

SEC

L DA SELECT+L
CHP SA+1
BCC TOOLOW
ENE EAHERE

LBA SELECT
CMP Ea :
BCC TOOLOW

LA SELECT+L
STA ER+1L
LDA SELECT
STA ER

RTS

tDR SELECT+1
STA SA+l
tpA SELECT
STA SA

RTS

JSR PRINT:

<BYTE TEX

IF USER TRIED TOQ SET AN
ADDRESS LESS THAN THE
STARTING ADDRESS,

MAKE USER DO IT OUVER.

IF SELECT>SA, SET EA=SELECT.
THAT WILL MAKE EADSA,

SET EA=SELECT.

RETURN WITH EA SET BY CALLER
(ISR EARHERE); EA SET BY USER
(JSR SET.EA); OR SA AND EA
SET BY USER (JSR SETRIS).

SET SA=SELECT.

RETURN WITH SA=SELECT.

SINCE USER SET EMOING
ADDRESS TOO LOW, FUT A
FROMPT ON THE SCREEN:

.BYTE CR.LF,LF,LF,” ERROR!I! -

.BYTE ° EMD ADDRESS LESS THAN START ADDRESS.”

267

4180
4188
4158
415@
4158
4153
4150
41553
4159
4159
4153
41£9
4150
4158
4158
4159
4153
4156
4153
4150
415
4150
4157
4150
4150
3150
4185

4160
4153
4169
418
4158
4165
4183
4163
413

4168
4183
4178
4188
4193
4zpa
4z10

4223

1538
1883
169A
1ESE
iegc
1630
1588
1887
1ER5
leAl
15AR2
158A32
isng

-
s
i

[T

MmO DODOmIm
+
TODONW DT OO~ND

el el

[
m o
MDD DDIDDDDD

[N
in
=

s b2
mm
kg p3
Lo

I
i

e b
m o

s
]
£
]

20

268 BEYOND GAMES

wh ur oM ous

M ue WE we aE AE W e ME Ma W g we

LBYTE © WHICH IS 7 LETX

JSR PR.BA FPRINT START RDDRESS.

JHP SET.ER AND LET THE USER SET A
MEW EMD ADDRESS.

FESFLEDEHLEFEL BB RBEB BB R R LR ABABRESHE LB SR ELERSE
PRINT START ADDRESS

4379
4388
4399
4450
4419
44z8
4430
4448
4450
4450
4478
4488
4450
4508
4518
4523
4538
4540
4550
4559
4570
45509
45553
4698
451

4529
4639
4640
4658
4560
4878
4689
4699
4785
4718
4725
4739
4748
4758
4760
4778
4788
4730
4268
4818
4827
4938
4848
4858
4858
4578
4258
4539
4998
4318

18CD0
16CF
i8Rz
1805
1803
1EDB
180K

T A9Z4

204914

324
264814
ADSS1S
ZBB314
A05415
288314
£a

we wa

FR

-i

S wr we ws us WE WS Ga e Wwe WE an e ua owe Wi owe wh

PR

e ap ws WE wa e

WE wn we W wE W wa P us W as @ W G

-SA LDA
JER

LDR
JSR

LDA
JSR
RTS

5 FRINT A DOLLAR SIGHN, TO
PR.CHR INDICATE HEXADECIMAL.

SA+1 PRINT HIGH BYTE OF START
PR.EBYT ADDRESS. H

SA o PRINT LOW BYTE OF START
FR.BYT
RETURNM TO CALLER.

E o e s L T e S S S S Ll Sl

PRINT EMD ADDRESS

SHHBHBEBEERSSREREBEFBEFESBRBFEPERERBSFIRFFES

LER LA
JSR

Log

JSR

LA

=R

RTS

¥ $ PRINT A DOLLAR SIGN, TO
PR.CHR INDICATE HEXADECIMAL.
EA+l PRINT HIGH BYTE OF EMD
PR.BYT ADORESS.
5] PRIMT LOW BYTE OF END
PR.EBYT ADDRESS.

RETURN TO CALLER.

SERPEEFEFERHEFBPEBHRSPEBSEEEFLRBERBRHERSRAFBRE

FRINT RANGE OF ADDRESSES

FHEBEFRHBFEPFBFERRBRFFLIREFDEL S B R BERBRBERBBES

4828 1EDF ZBBBLE RANGE JSR FR.S5A PRINT STARTING ADDRESS.
4938 1BEZ AZS2D
4948 1664 204814

LDA
JER

- PRINT A HYFHEN.
PR.CHR

269

4558 LEET 2BCD16 JSR PR.EA PRINT END RLGRESS.
4353 L1SEA B0 RTS RETURN TO CALLER.
4573 3

4989 :
4358 3

565 H
£018 ;
labats 3

5939 3
5648 :

Aatal ;

5369 ;

[Sorgs] H KEEFFRFELRIEEEFFERERREERERFETEFRREERR St ks s
5020 H
5393 ; PRINT HERDER

518€ :

5118 H FESEEBDFBRERFBERPRBEEEBLRLESDHRBEESEERIBRHBE
5123 3

5138 3
5140 H
5158 ;

168 3
5178 1GEE ZBE414 WEADER JSR PRINT:

S186 16EE 7F YTE TEX
5198 1GEF 80 “BYTE CR,LF,LF,” DUMPING -
5136 1BF2 BA

515¢ L6FL 8A
S1ET 1EFZ 44
$138 1EF2 S5
5198 15F4 4D
51909 1EFS 5@
5158 16FE 49

S1SE 1EF7 4E
5*3@ 16F8 47

1EFS 25
LEF& FF .BYTE ETX

€210 15FE ZBOF1E JSR RANGE
522@ LEFE ZB7214 JSR CR.LF
5233 179l 20E£414 JSR PRINT:
5246 1794 7F .BYTE TEX,LF,LF
£z48 1705 BA

5248 1788 2R ‘
SZ8@ 1787 29 .BYTE ~ ® 1 2 3 456 7 °

T
5Z53 1748 28
g

5258 1789 Z9
5253 176R 2
5253 17)

1768
€250 172C 29
5258 176D 29
5259 17SE 28
5258 17ef 24
5258 171d 29
5258 1711l 20
5258 1712 31
5258 1713 28
5258 1714 2
5258 1715 32
5256 1716 20

270 BEYOND GAMES

5259
5Z5@
5258
529
SZ5

5269
SzZE8
5269
5258
SZRE

Szea

5278

2NN

DEES

W0y oo W
i R e B0

oAy nnamefan
W W
N 3 N]l
gt

N S A
WMo g i

3

28
33
24
z3
34
25
29
35
29
zZ5
35
29
28
37
28
23
38
20
29
33
z29
23
41
28
289
42z

1 29

29
43
28
24

44

ze
45
zz
28
46
il
oA
BA
FF
6

W WS e e NI uE aa wa WE aa MR wp ws WE G

.BYTE'8 8 A B C D E F

.BYTE CR,LF,LF,ETX

RTS

FEEEREFRAERERSEBEBEREEFBL BRI DR EEE SRS LRSI HEHE
DUKP OME LINE TO FRIMTER

FHREREFEESGAAREREERRPREBRBELFEERER AL LB ERBIHH

27

5449
5458
5460
5478
5488
5498
5589
5519
5528
5538
5549
5559
5568
5578
5589
5558
=3=1a17]
S618
5629
56308
5648
5659
SeEa
5674
5680
SR98
5768
5718
5728
5738
5743
5758
5768
57748
5788
S799
=g=tatal
S318
5828
5839
5849
5858
5868
5878
0850
58959
5369
5918
5928
5538
5348
5359
£968
5979
5529
5954
£858
5818

1742
1745
1748
1749
1748

174€
174F
1761
1754
1757
1759

176C

175F

1761
1763
1766
1763
1786C

176E
1771
1774

1777

1773
177C
177E

1758
ivez

we we wn

287214 PRLINE JSR

ADgs12 LoA
458 FHR
298F AND
805615 5TA
3
H
&8 PLA
29F9 AaND
808512 s5TA
2URL11S JER
AzZe3 Lox
269614 JSR
s
H
ADSE1S Lna
3
Fasn BEQ
H
H
AZE3 [LO0F LDX
249614 JSR
298013 JSR
CESE1S DEC
Dar3 BNE
s
289815 COL..OK JER
297014 JBR
288317 JBR
3
3689 BMI

a we wp

’
ADBS12 NOT.EA LDA

Z98F
csed

nBEC
=)

272 BEYOND GAMES

AMD
cMe

BNE

EXIT RTS

wn we WE wE ws W wR oW W

e WE ws we

CR.LF
SELECT

#8GE
COLUMN

#SF0
SELECT
PR.ADR
*3
SPACES

COLUMN

COL..OK

%3
SPACES
INC.SL
COLUMN
LOOP

BUMPSL
SPACE
NEXTSL

EXIT

SELECT
#HaF
#3

COL.OK

DETERMINE STARTING COLUMM.
FOR THIS DUMP.

NOW COLUMN HOLDS NUMBER OF
HEXK COLUMN IN WHICH WE DUMP
THE FIRST BYTE.

SET SELECT=BEGINMNING OF A
HEX LINE.

PRINT LINE® S START ADDREESS.
SPACE 3 TIMES--TO THE
FIRST HEX COLUMN.

0O WE DUMP FROM THE FIRST
HEX COLUMNY
IF S0, WERE AT THE CORRECT
COLUMN NOW.

IF MOT, SPACE 3 TIMES FOR
EACH BYTE NOT DUMPED.

DUMP SELECTED BYTE.
SPACE ONCE.
SELECT NEXT BYTE

MINUS MEANS WE” UE DUMPED
THROUGH TO THE £END ADDRCSS.

DUMPED ENTIRE LIMNE?

(4L5B OF SELECT=87)

IF 50, WE°VE DUMFED THE
ENTIRE LINE. IF NOT,

SELECT NEXT BYTE AMD DUMP IT.
RETURMN MINUS IF ER DUMPED;
RETURM FLUS IF EA NOT DUMFPED.

5629
6833
6848
6658
6760
6878
6988
5823
6188
5110
6129
65138
6148
6158
6168
5178
5188
6188
€209
€219
6228
6238
6240
6258
6269
6278
5288
6259
6368
6318
E3Z28
8333
6349
6359
5369
6378
€388
€298
6469
6418
6428
6438
6448
6458
6468
6473
5489
5458
6582

1783
1784
ivev
178A
178C

178
178F
1732
1755

1797

179A
173C

179D
178F

17A8
17R3
17RB
17A3
178C

38
ADBB1Z
CDssls
3888
juisizioy

28
AlBS1Z
CD5415
BEGS

n WS ue we wp

s W we

SELECT NEXT BYTE (IF < END ARDRESS)

FHBEESEBELRRBFFRRR RS LEBLEBBBRREREERBR LSRR LSS

NEXTSL SEC

wa e

LpR
cHP
BCC
BNE

SEC
LDA
cP
BCS

H
286513 SL.OK JSR

ASSY
€

ASEF
(=24]

s

NO.

Wh Wy WO W WA we W W we

s uE g4 We

LDA
RTS

INC LDA
RTS

SELECT+1
EA+L
SL.OK
NO. INC

SELECT
ERA
NO. INC

INC.SL

2

#5FF

HIGH BYTE OF SELECT LESS
THAN HIGH BYTE OF EA7

IF 50, SELECT<END ADDRESS.
IF SELECT2>EA, DON' T
INCREMENT SELECT.

SELECT IS IN SAME PAGE AS EA.

SIMCE SELECT <= EA, WE tAY
INCREMENY SELECT.

SET “INCREMENTED" RETURM
CODE AND RETURNM.

SET "NO INCREMENT" RETURN
CODE AND RETURN.

S$BBEBLSFRBBELBSFRBEBERFESEBRRBEFREFEIRBHRFS

SELECT START RDDRESS

FEBEEAFEEESEPBLERRFEEB RSB LBRRPAEERFERBHRRFHES

ADS5Z215 GOTOSA LA SA

anasiz
ADS31S5
gpesiz2
€4

STA
LoA
sSTR
RTS

SELECT
SA+l
SELECT+1

SET SELECT=Sf.

RETURN W?7SELECT=SA.

273

Appendix Cé:

Table-Driven Disassembler (Top
Level and Utility Subroutines)

275

APPENDIX CB: ASSEMBLER LISTING OF
TABLE-DRIVEN DISASSEMBLER

TOP-LEUEL AND UTILITY SUBRCUTINES

SEE CHAPTER 8 OF BEYOND GAMES: SYSTEM
SOFTWARE FOR YOUR B5B2 PERSONAL COMPUTER

BY KEN SKIER

[
M6 aam AE wap ME WS WT WE we WD us wa WR wr A ae Y ws wh WS W as we

$$$$%%%%%#*%*%****%*****#***#ﬁ%*%*#*#%**%&*%

CONSTANTS

&%*%%*%#%%##*%3**%#**#*$%#****%¥$***$*$*

e WE an AT WP uwE ME WE s ws WS

328

345

3I8H BESD= CR = %80 CARRIAGE RETURNM.

360 H

370 DODA= LF = $8A LINE FEED.

288 H

284 H

40R BUTE= TEX = &7F THIS CHARACTER MUST START
418 3 ANY MESSRGE.

422G H

438 QarF= ETR = $FF THIS CHARACTER MUST END
443 3 ANY MESSAGE.

455 3

469 3

478 H

453 H

435 s

509 H

i@ 3

528 H

538 H

54@ T BEFEEERBRERRRERBRREBEFBRBEBRB B SRR FREFEBRARRR
553 H

5643 H EXTERNAL ADDRESSES

8578 H

528 1 BEEEEFERREREREFEEARBRRBABRAFEIBRBSFERURAREEE

an

553

H

522 :

518 5

620 H

539 H

548 1269= UMPAGE=%1288 STARTING PAGE OF UVISIBLE
558 3 MONITOR CODE.
650 1205= SELECT=WUNPAGE+S

878 1267= UISHON=UMPAGE+7

688 1254= GET. SL=UMFAGE+%94

£39 122D= INC.SL=UNMPAGE+$ 10D

708 131A= DEC. SL=UMPAGE+%11A

718 3

729 3

730 1408= PRPAGE=51408 STARTING PAGE OF PRINT
748 3 UTILITIES.
758 14p98= TUT.ON=PRFAGE+S

750 l40E= TUTOFF=PRPAGE+$BE

778 14l4= PR.ON =FRPAGE+$14

780 l41A= PR.OFF=PRPAGE+S1RA

793 1440= PR.CHR=PRPAGE+%43

869 L472= CR.LF =PRPAGE+$72

£10 1470= SPACE =PRPAGE+$7D

820 1496= SPACES=PRFAGE+$36

838 1483= PR.BYT=PRFAGE+$E3

940 14E4= PRINT: =PRPAGE+$E4

859 1512= PUSHSL=PRPAGE+$112

BS% 152B= POP. SL=PRPAGE+$12B

872 H

820 3

828 1509= HEX.FG=$1588 ADDRESS OF PAGE IN WHICH
s08 3 HEXDUMP CODE STRRTS.
9im ; \
928 1552= SA=HEX. PG+$52

930 1554= EA=SA+Z

949 153A= DUMPSL=HEX. PG+$39A

958 1SAl= PR.ADR=HEX.PG+SAL

960 16DF= RANGE=HEX. PG+S$1DF

978 15E9= SETADS=HEX. PG+EES

985 1783= NEXTSL=HEX.PG+$283

959 17AD= GOTOSA=HEX . PG+$2A3

1968 3

iB1B ;

1928 ;

1035 :

1048 :

1856 ; DISASSEMBLER TABLES:
1Bsa :

1878 :

1088 :
1536 1509= DSPAGE=#18P0 STARTING PAGE OF DISASSEMBLER
1198 3
111@ 1B1B= SUBS =DSPAGE+$Z21B

1170 1BS@= MNAMES=DSPRGE+$258
1138 1CBo= MCODES=DSPAGE+$308

1148 1D28= MODES =DSPAGE+$400

1154 3

1168 ;

278 BEYOND GAMES

e Gr e we

we ws ws us ws as

ws

SLNS

=]
Mt wr W fq e we wr we

r

MUM

r

-
C owe [T ar s [1] e

TTER

MP.X

SUEBPTR

o
T oee »
td
=~
-~
o

H
OPCHRS

AORCOL.

1EEQ
1e7a

H
H
.
s
H
H
H
B
.
H
H
H
»
s
H
»
H
s
;
s
.
’
.
H
3
.
3
H
H
H
H
{,

1743 1963 268814 TU.DIS JSR TUT.ON

UARIABLES

*=DSFAGE

.BYTE

.BYTE

.BYTE

JBYTE

. WORD

.BYTE

-BYTE

LBYTE

[u]

i6

FHHERERRBEEREPERBRBERARUPRERABRERBAARSEIELRS

NUMBER OF LINES TO BE
DISASSEMBLED BY TV.DIG.

DATA CELL: USED BY TV.DIS.

COUNTS LETTERS PRINTED IN
A MMEMONIC. USED BY FMNEMON.

DATA CELL USED BY MNEMON,

POINTER TO A SUBROUTINE.
SET, USED BY MODE.X

DATR CELL: USED BY FINISH.
DATA CELL: USED BY FINMISH.

STARTING COLUMN FOR ADDRESS
FIELD. OSI C-IP OWNERS:
FOR MARROW FORMAT, SET
ADRCOL=%8B. SEE NOTES

IN LISTING FOR ADDRESS MODE
SUBROUTINES.)

TU-DISASSEMBLER

SELECT SCREEN FOR OUTPUT.

279

1758
17E4
1779
1788
1738
1889
1819
18243
1834
1848
1858
1869
1878
1868
1890
1988
191@
1828
1938
184@
1858
1959
1978
18568
189@
2868
2819
2829
2833

2548

2958
2859
2879
28393
2834
2129
2189
2188
2119
Z1i10
2118
2113
2119
2118
2119
2119
2118
2119
2118
2119
211@
2111
2114
2118
2119
zZ11a
2113
2118

199C
13aF

1912
1914
1317
181iA

181D
1929
1923
1825

1825
1823
192C
18zF
1938
1931
1393z
1933
1834
1935
1336
1837
1938
1833
193A
1936
193C
193D
183
192F
1849
1341
1342
1943
1944
1545

ADBBLY LA
609113 sTA
s
ASFF LoA
805415 STH
BI551S sTA
287214 JSR
i
287019 TULOOP JSR
CEB11S9 DEC
Dorg BNE
€9 RTS

WE s MR uE WA MR we MY we wE e wd Wy

h we WE we we wE ue

DISLNS
LINUM

#5FF
A
EA+L
CR.LF

BSLINE
LINUM
TULOOR

INITIARLIZE LINE COUNTER WITH
OF LINES TO DISASSEMBLE.

SET END ADDRESS TO $FFFF,
S0 NEXTSL MWILL ALWAYS
INCREMENT SELECT FOINTER.
ADVANCE TO A NEW LINE.

DISASSEMBLE OME LINE.
DONE LAST LINE YET?
IF NOT, DO NEXT ONE.
IF S0, RETURN.

HEPFEFSFEBEFHELBEEFEFEBRBRFIERRES RS RBHIRHBBRS

PRINTING DISASSEMBLER

HHBBHEEEFEFREFLIFERLE IR AP LR BBEBISF LIS ERBR L SRS

i
281A14 PR.BIS " JSR PR.OFF

209814
20414

280 BEYOND GAMES

JSR
JSR

TYT.ON
PRINT:

DE-SELECT PRINTER
SELECT S5CREEN FOR CUTPUT.
DISPLAY TITLE.

-BYTE TEX,CR,LF

BYTE

PRINTING DISASSEMBLER.”

2119
Z118
2118
2118
z211a
2119
2118
zZ128
2134
2133
2139
2148
2158
2168
2174
2136
2199
2269
2284
pardsla]
z213
2218
Zz18
2218
2219
2z19
2218
2218
2213
2219
2218
2218
2zZ1@
2218
2226
2238
2249
2258
2268
2272
2288
2258
2388
2319
232a
233

2343
2358
2268
2378
2358
2339
zZ49a
z2418
zZ428
2432
2443
2458

1346
1947
1848
1943
1948
194
184C

1840
184E
194F

1999

1953
1356
1859
1558
195E
185C
125D
1858
i85F
1353
1961
1962
1863
1364
1965
1866
1867
1968
1968
196R
1368

188E
1371

1974
1977

19738

13vC

ZBESIS

281414
28E414
F

220F16

2BRELT

287214

287013 PRLOOP

1@FB

ZBL1R14

58

we ue ae

Ae wh wE we wE we

" owr

PTET

BYTE CR,LF,ETX

JSR

JBR
JSR

SETADS

PR.ON
PRINT:

LET USER SET START, EMD

" ADDRESSES OF MEMORY TO EBE

DISASSEMBLED.
SELECT PRINTER FOR OUTPUT.

.BYTE TEX,.CR,LF

<BYTE ’ DISASSEMEBLING ~

LBYTE ETX

JSR
JBR
JSR

ISR
BPL

JSR

RTS

PANGE
GOTOSA
CR.LF

OS5LINE
PRLOOP

FR.OFF

PRINT RAMGE OF MEMORY TO
BE DISASSEMBLED.
SET SELECT=5TART OF BLOCK.

ADUANCE TO A NEW LINE.
DISASSEMBLE OMNE LINE.

IF IT WASH T THE LAST LINE,
DISASSEMBLE THE NEXT ONE.
DE-SELECT PRINTER FOR OQUTPUT.

RETURN 7O CALLER.

281

Y
i
5a 3

513

25568
2553 197D
2579 1988
2589 1381
2538

25208 1SB4
2518

ws

T ws WS us et ue as e we

FHEEEEBEBBEEEHRREBFBRERBHREHNBEREDIRRER S BRI ERRES

DISASSEMBLE ONE LINE.

FEABEBPEHRERPABBBERERBREBLEEERBLEBFRBIREB BB RES

7
288412 DSLINE JSR GET.SL

48
2838213

287014
£3
22713

5B 22011A

S8 5SS

i T I B T A M M R 11

At N N 4 N OO T I AN Bl

9 U3 a
[SN IR IS B

D W N

oo
N oF
[AxgRN

NNMNNMNMPORNRNADNNNRNDNIT
o T
=

oW
SEOSI

o 0

5]

MO RO a8

DUy WD
D o S0 N D

[N
[T
= ®
—
uy
o
e

&

=

00w NN NN NN
=
—
[21]
o
jul

EDEBALC

£A

282 BEYOND GAMES

we ue we ws we we s

 wE s we we un we

H
H
H
5
H
.
H
H
H
H
3
H
.
H
.
;
3

PHA
JSR MMEMON

JSR SPRCE
PLA
* JSR OFERND

JSR FINISH

JSR MEXTSL

RTS

GET CURRENTLY-SELECTED BYTE.
SAVE IT OM STACK.

PRINT MNEMONIC REPRESENTED
BY THAT CPCODE.

SPACE ONCE.

RESTORE OPCODE.

PRINT OPERAND REQUIRED BY
THAT OFCODE.

FINISH THE LINE BY PRINMTING
FIELDS 3-6. FIMISH LEAVES
SELECT FPOINTING TO LAST
BYTE OF INSTRUCTION.

SELECT NEXT BYTE. IF
SELECTLER.

RETURN W/RETURMCODE FROM
NEXTSL. SELECT PGINTS TO
NEXT OPCODE, OR SELECT=ERA.

PRINT MMEMONIC

NEMION LDXK 43

- ae

we ws

STX LETTER
TAX

LDA MCODES, X

TAX

5
C EDSE1B MNLOOP LIA MHAMES,X

WE° LL PRINT THRED LETTERS.

PREFRRE TO USE OPCODE AS AN
INBEX.

LOOK UP MMEMOMIC CODE FOR
THAT OPCODE. ™MCORES IS
TABLE OF MHEMONIC CODES.

PREPARE TO USE THAT MHEMONIC
COGE RS AM IMDEX.
GET A MNEMONIC CHRRACTER.

3848
3858
39608
3874
3650
3899
3199
3118
3128
31328
3149
3159
3169
3179
21808
3198
3288
3z18
2zz2a
3239
3248
3259
3268
3278
32806
3229
3363
3318
33z8
3330
3349
3350
3360
3378
3380
3359
3408
34108
2428
3432
3448
3459
3468
3479
3489
3450
2509
3518
3528
3530
35408
3558
3568
2570
3588
3589
35608
3618

199F

1972
19685
18A8
13A8
18AC
1SAE

19AF
1SB@

1983

1984
18B7

8EB319

284914
REA3138
ES
CERZ1S
DBEE
642

an
BDOALD

AA

2BER819
=14}

ws e we

We WE uE we WE us we ue

B WE MR W W we wr we uP WP W us

STX TEMP.X

JSR PR.CHR
LOX TEMP.X
INX

DEC LETTER
BNE MNLOOP
RTS :

(MNAMES IS A LIST OF
HHEMONIC NAMES.)

SAVE X-REGISTER. SINCE
PRIMTING MAY CHAMNGE X.
PRINT THE MNEMONIC CHARACTER.
RESTORE XK, :

- ADJUST INDEX FOR NEXT LETTER.
" PRINTED 3 LETTERS YET?

IF NOT, PRINT MNEXT ONE.
IF SO0, RETURN TO CALLER.

BhEEFESBFLBRBRRBERBEREF LIPS EIPLRBERBBIRBERHE

PRINT OFERAND

BHEPBEFEBEEBFSEREBERBEEEPBRBBEPERRBIBRIHEBEIS

OPERND TAX

Wh we Ws WE ws WE W ws

ws e we we we

LDA MODES,X

TAX

JSR MODE.X
RTS

LOOK UP ADDRESSING MODE
CODE FOR THIS OFCODE.

X NOW INDICATES ADDRESSING
MODE.

HANDLE THAT ADDRESSING MODE.
RETURM TO CARLLER.

BHEFEREAAERBREURFBERBERB BRI R SRR A BIBRRB BB R4S

HANDLE ADDRESSING MODE "X*©

BERBEEBEEBBERBERREREBRREBRBEIEEDFRRAEBRRLRREES

283

26206
3638
3647 1988 BOLBLIR MOBE.X LDA SUBS, X GET LOW BYTE OF Xth POINTER

we as

3653 19BB 808413 STA SUBPTR iM TABLE COF SUBROUTINE
3cE8 3 FPOIMTERS.

367A 13BE ES INX ADJUST INDEX FOR NEXT BYTE.
3588 195F BD1B1B £nA SUBS,X GET HIGH BYTE OF POINTER.
3523 18CZ2 8DASLs STA SUBPTR+1

3778 18CS BCA418 JMP (SUBPTRI JUMP TO SUBROUTINE SPECIFIED
3713 H BY SUBROUTINE POINTER.
3728 H THAT SUBROUTINE WILL RETURN
3733 H TO THE CALLER OF MODE.X,
3743 H NOT TO MODE.X ITSELF.
3753 H

3750 H

3773 H

3788 H

3738 3

3IBEB H

813 H

3828 H

3829 3

3848 H

3853 Ty s e e
3868 H

3874 H DISASSEMBLER UTILITIES

3888 3

38383 5 BEHRBBEBERIRSEBLERBEFEBRER BB RESRISFBRIPEIEES
3980 H

3916 H

3528 H

3933 H

3347 H

3858 3 PRINT ONE-BYTE OPERAND

3883 H

3973 H

33828 H

3987 1SCS 299013 OMNEBYT JSR IMC.SL ADVANCE TO BYTE FOLLOWING
4629 H OFPCODE.

4618 19CB 283SA15 JSR DUMPSL DUMP THAT BYTE.

4029 19CE 5@ RTS RETURN TO CALLER.

483348 H

47483 H

48503 H

4259 H

4378 H

4234 H PRINT TWO-BYTE OPERAND:

4898 H

4180 3

4118 H

4128 1SCF 280013 TWOBYT JSR IMC.SL ADUANCE TO FIRST BYTE OF
4128 H QFERAMND.

41470 18D2 285412 JSR GET.SL LOAD THAT BYTE INTO ACC.
4158 1905 48 PHA SAVE IT.

4158 19D6 289D13 J5R IMC.SL ADVANCE TO 2ND BYTE OF
4179 H OPERAMD.

4188 18038 ZB9Al15 ISR BUMPSL DumMe IT.

418@ 1390C €3 PLA RESTORE. FIRST BYTE TQ ACC.

284 BEYOND GAMES

4260 190D 288314
4219 19E8 69

4228
4238
4240
425@
4268
4z78
4280
42908
43@8
4319
43298
433@
4340
4358
4368
4378
4380
4398
4478
441
4420
4433
4440
4459
4450
4470
4489
4453
4528
4510
4528
4531
4548
4553
4560
4570
45808
4598
4603
4510
4520
4530
4648
4658
4569
4578
4588
4598
4709
47108
4729
47313
4740
4750
476@
4778

1SEL
13E3

1SES

189E7
1SER

198
19ED
iore
19F2
19F5

19rs
19r8
19FB
19FD
1RBa

R9Z8 [
nag2

A9Z9 R

284814 S
69

Agzc X
284814
AY58
204914
68

AJZC Y
234814
ASEg
284914
=14]

T we ae wr us ws ae ws wr Wt

AREN

PAREN

£
EMDIT

- we

NDEX

s ar @

we WA an wn an e

INDEX

W s W W we W uE W o Wy

JSR PR.BYT DUMP IT.
RTS RETURN TO CALLER.

PRIMT LEFT, RIGHT PARENTHESES

LDA # C
BNE SENDIT

LDA # 3

JSR PR.CHR
RTS

FRIMT A CoMMA AND AN "X°

Loa # ,

JSR PR.CHR PRINT A COMMA.
LnA # X

J5R PR.CHR PRINT AN "X~".
RS

PRINT A COMMA AND A *Y*

LoA # ,
JSR PR.CHR
LpA #Y
JSR PR.CHR PRINT A "Y".
RTS

PRINT COMMA.

285

4873
4828
4899
4569
4919
4329
4839
4348
4958
43968
4579
4389
4394
5899
5319
5829
5938
S5B43
5859
SBE8
o878
5829
5Rs86
5182
5119
5129
51324
5148
5158
5164
5178
5189
5199
52084
5218
5228
5238
5249
5258
5263
52790
5258
5256

jeials]
$3148
5326
5339
5340
5359

1ABL
1A84

1887

1AB3
1AZA
1R/8D
1988

1A18
iAll
1A12
1A13
1A16

1R18
1ALB
1AalC
1A1D
1628
1AZ3
1AZ6
1AZS
1RzC

1AZF
1A31

1A34

1637

s owe e W 4B A e WE wy W VA Gy el we

FIMISH THE LINE

3
208719 FINISH STA

BEZE13

cA

36Y6
Za1A13
cA
16FA

28

D3

38
ADABLI
ES04

EDB7T1E

28
AR
283514

ZBALLS

287014
288115
ZAen13
CEesls

1072
281A13

286 BEYOND GAMES

“s s uz

LOCP.1

S

] s we ws

t.OK

Ed
LOOP.2

F

-

Ped ws we w1 wr ws

HMEMND

STX

DEX

BMI
JSR
DEX
BPL

PHP
cLD
SEC
LDA
SBC

SBC
PLP
TAX
ISR
ISR
TSR
ISR
ISR
DEC

BPL
JOR

JSR

RTS

NOTE:

OPCHRS
CPBYTS

SEL . OK
DEC.SL

LOOP. L

ADRCOL
4

OPCHRS

SPACES
PR.ADR
S5FACE
DUMPSL
IMC. 5L
OFBYTS

LooP.Z
DEC.SL

CR.LF

EVERY ADDRESSING MODE
SUBROUTINE MUST END BY
SETTING X=# OF BYTES IN
OFERAND, AMND ACC=% OF
CHRRACTERS IM OPERAND.

SAVE THE LENGTH OF THE
OFERAND, IN CHARACTERS AND
IN BYTES. @ MEANS NO
OFERAND.

IF MECESSARY, DECREMENT THE
SELECT POINTER SO IT POINTS
TO THE OPCODE.

NOW SELECT POINTS.TO OPCODE.

SAVE CALLER'S DECIMAL FLAG.
PREPARE FOR BIMARY ADDITION.
SPACE OVER TC THE COLUMN

FOR THE ADDRESS FIELD:
OPERAND FIELD STARTED IN
COLUMN 4. ..

AND INCLUDES OPCHRS
CHARACTERS.

RESTORE CALLER' S DECIMAL FLAG

PRINT ENOUGH SPACES TO
REACH ADDRESS COLUMN.
FRIMT ADDRESS OF OPCODE.

SPACE ONCE.

DUMP SELECTED BYTE.

SELECT NEAXT BYTE.

DUMPED LAST BYTE IN
INSTRUCTION?

IF MNOT, DUMP MEXT BYTE.

BACK UP STLECT, SO IT POINTS
TO LAST BYTE IN OFERAND.

IF S0, GO TO A MNEW LIMNE:
HAVING DISASSEMBLED ONZ LIME.

GO TO A MEW LINE.
RETURN TO CALLER.

Appendix C7:

Table-Driven Disassembler
(Addressing Mode Subroutines)

287

APFENDIX C7: ASSEMBLER LISTING OF
TRAELE-DRIVEN DISASSEMBLER:

18

A

29
43
58
£0
7a
&a
=1

180

110

128
33

143

152

169

179

128

155
2e9

216

zza

238

249

250

260

278

2e8

289

208

318

320

ase

247

353

388

378

380

353

459

4i@

428 ©960= CR = @D CARRIAGE RETURM.

439

447 9RDA= LF = 38A LINE FEED.

456

450

478 p@7F= TEX = $7F THIS CHARACTER MUST START

488 ANY MESSAGE.

456

B2 BOFF= ETX = $FF THIS CHARACTER MUST END

si@ ANY MESSAGE.

525

829

S4m

550

=)

576

ADDRESSING MODE SUBROUTINES

SEE CHAPTER 9 OF BEYOND GAMES: SYSTEM
SOFTHARE FOR YQUR 6582 PERSONAL COMPUTER

WE we WE wh M W we WSl M W e WP Y us

BY KEN SKIER

B wr we WE Gy W

ue e

ae

EREBEFEEEPEEFELERFEIBELBRBBRSSERISRE BB RHPR KL

CONSTANTS

we uE we W as we e

FEFSESELEREBBEESERBERBFBPERRRES SRPRRFBRBL RS

we we WS wu we

ot e e LIRS s we

TR T

289

WM =l

&
5]
3
o)
3
18]

w9 m

{1
=
i)

Sz
838
S48
858
S68
sS78
969
959
1963
1118
1829
1820
12348
1958
12€E9
1473
1684
1830
1108
1114
l1za
1128
1148
1159

290 BEYOND GAMES

1229=

1205=
12a7=
1294=
1200=
131A=

15683=

15A1=
1783=

1999=

19Ce=
19CF=
19E1L=
18E5=

19EB:=

W WE wE wE s We WE we ws e ws e

wo we WE ws wE WE us WE ws WO w

ws as s o s we

BHPHRAFRBRBF PR LSRR RLIBBERB R BB RERBREBLBAELS

EXTERNAL. ADDRESSES

BREEAPEELPBBLRASERREREB R BEBBIERBEIRBRRRREIS

UMPAGE=$1280 STARTING FPAGE OF VISIBLE
MONITOR CODE.

SELECT=UMPAGE+S

VISMON=UMPAGE+T

GET.SL=UMPAGE+$34

IMNC. SL=UMPAGE+$18D0

DEC. SL=UMPAGE+H11R

PRPAGE=%14108 STARTIMG PAGE OF PRINT
UTILITIES.
PR.CHR=PRPAGE+%48
CR.LF =PRPAGE+HT2
SPACE =FRPAGL+E7D
SPACES=FPRPAGE+%$35
PR.BYT=PRPAGE+$E3
PRINT : =PRPAGE+FL 4
PUSHSL=PRPAGE+S112
POP.SL=PRPAGE+%1ZB

HEX.PG=%1582 ARDRESS OF PAGE IN WHICH
HEXDUMP CODE STARTS.

PR.ADR=HEX.PG+&AL
NEXTSL=HEX.PG+$283

DSPAGE=%1803 START OF DISASSEMBLER CODE.

ONEBYT=DSPAGE+%CB
THOBYT=0SPAGE+ZCF
LPRREM=DSPAGE+FEL
RFAREN=DSPARGE+SES
KINDEX=DSPAGE+SED

11683 189F6= YINDEX=DEFAGE+$FB
1178
1189
1168
1209
1219
1228
123
1246 1R48 #=DSPAGE+$140 -
259
1268
1279
1258
1299
1399
1218
1329
1339
1348
1358
1363
1379
1389
1393
1488
1413
1423
1432
1448
1453
1463
14793
1423
1459
1508
1518 1A48 28CF1S ABSLUT JSR TWOBYT PRINT A TWO-BYTE OPERAND.
15280 1R43 AzZBZ LDX #2 OPERAND HAS TWO BYTES...
1533 1A45 RS04 LA #4 . ..AND FOUR CHARACTERS.
1548 1A47 68 RTS RETURN TO CALLER.

1558
158G
1579
1589
1538
1629
181@ H

1629 H

1626 H

1548 1A48 20401A ABS.X JSR ABSLUT

185d 1A4B 22EB19 JSR XRINDEX PRINT A COMMA AND AN "X".
1688 1A4E AZ82 LDK #2 OFERAMD HAS 2 BYTES...
1672 1A58 ASGS LDA #6 .. AND SIX CHARACTERS.
1688 1R5Z EB RTS RETURM TO CARLLER.

1838
1723
1710
172a
1739

WP et M ws W we ws

FREEBFEIBRERABEESIRRRBEEBERELIRBBRERBRERARRS

ADDRESSING MODE SUBROUTIMNES

PELLSEBEBEBESES SRR BREBEEPERPBFRSREREEBHBE DS

ABSOLUTE MODE

MR WS G uE aE e ws ME GE WE WS WA up W WE WE s WP wa WP uUS we VI we

we we

e owr wr we wa e

ABSOLUTE, X MODE

ws Wt we we we

291

ABSOLUTE.Y MODE

w owe we owe

1A53 224814 ABS.Y JSR ABSLUT
InTS ZOFELS ISR YIMNDEX
1ASS FZRAZ LDX %2
LASE RSES oA %6
1150 bg RT5
]
.
’
?
3
3 ACCUMULATOR MODE
s
1868 H
18918 1ASE A3S41 ACC LoA # A PRINT THE LETTER "f°
1826 1RED 284014 JSE FR.CHR
1938 1883 AzZEg LDX #3 OPERAND HAS NO BYTES. ..
1943 1ASS ASOL LOA #1 .. .AND OHE CHRRACTER.
1950 1ABY 68 RTS RETURM TO CALLER.
1368 H
1879 H
1928 H
1923 H
2056 H
zaia H IMPLIED MODE
2029 H
28359 H
2848 H
2033 1AE2 AZOG IMFLID LDX 43 OPERAND HAS MO BYTESG. ..
Z2BEE LABA AS0RG L DF #8 ... AMD NC CHARACTERS.
2979 1aeC 63 RTS
2e20 3
panizls) H
2169 H
2113 H
2129 H
21353 H IMMEDIATE MODE
214@ H
Z158 H
2188 H
217@ 1ASD A3Z23 IMMEDT LDA # % PRINT A “#° CHARACTER.
2180 1REF 284814 JSR PR.CHR
21313 H
228 1ATZ2 A3S24 LDR & % PRINT A DOLLAR SIGN TO
2218 1A7T4 284014 JER PR.CHR INDICATE HEXKADECIMAL.
2223 LARTT Z50CE1g JSR OMEBYT PRINT OME-BYTE OPERAND IN
223¢ H HEXADECIMAL FORMAT.
22449 1ATAR RAZEBL LO% #1 OFPERAMD HAS ONE BYTE...
2259 1ATC AS24 1LDA #4 ...AND FOUR CHARACTERS.
2260 1A7E B9 RTS RETURM TO CALLER.
2275 H
2220 H
2255 H
23a9 H
21a H

292 BEYOND GAMES

2328
2328
2349
232549
ci=1a]
2373
23849
2338
Z4128
2418
z42a
2438
2448
2458
24568
2478
2484
2488
2588
2518
2528
2538
2548
2558
256569
A=Y 4]
2588
2554
25688
2618
2626
2628
2648
2558
258
2678
26848
2683
2753
2719
2vza
2738
2748
2758
rarg=idl
z27va
2788
2784
2860
2819
2820
28329
2249
2854
2880
2874
2889
Z2899

1R7F
1AB2
1ABS
1A88

1AB8A

1A8C

1ABD
1RS9

1RE3
1RSS5

1ASB

1ASA

1ASE
1ASE
1AA1
1AR4
iaAa7?
16AR9

£
1AARC 288013 RELATY JSR INC.SL

5w ey ue

¥
285119 INDRCT JSR

Z84818
ZRESLT
A986
AZB2

[=34]

ZBEILS IND.X

ZBES1AR
ZBESLS

AZBL
nIEs

58

3
ZBEL119 IND.Y

268DB1R
20E513
2arslg
AZBL
[3isias)

58

ar ws ur un wE -

ur wE e we

e

ur e

WE ws we WP e wr ous

* us

woas

O T

JSR
JSR
Loa
LDX

RTS

JSR
JSR

JER
LD
Loa

RTS

IMDIRECT MCDE

LFAREN PRINT LEFT PARENTHESIS.
ABSLUT PRINT TWO-BYTE OPERGBND.
RPAREN PRINT RIGHT PAREMTHESIS.
#5 A HOLDS MUMBER GF CHARACTERS
s- IM OPERAND.
#2 X HOLDS NUMBER OF BYTES 1IN
CPERAND.

RETURN TO CALLER.

INDIRECT,X MODE

LPAREM

ZERD. X PRINT A ZERC PAGE RDDRESS,
A COMMA, AND THE LETTER "X".

RPAREN

#1 OME BYTE IMN OPERAND.

#8 8 CHARACTERS IMN OPERAND.
(C-IP OWNERS: f3 B8, NOT
A9 88, FOR MARROW FORMAT.?

INDIRECT,Y MODE

JSR
JER
JSR
JSR
LDX
LDA

RTS

LPAREN
ZEROPG FRINT A ZERO PAGE ADDRESS.
RFAREM
YINDEX PRIMT A COMMA AMD A/ "Y".
#1 OPERAND HAS 1 BYTE...
8 .. .AND € CHARACTERS.
(C-IP OWNERS: A3 @6, MNOT
AS B8. FOR NARROW FORMAT.)

RELATIVE MODRE

SELECT NEXT BYTE.

293

2998 1AAF Z2B1215 JSR PUSHSL SAVE SELECT POINTER ON STACK.

2918 1ABZ 233412 JSR GET.SL GET OPERAND BYTE.

2920 18BS 48 PHA SAVE IT ON STACK.

29338 1AB6 288013 JSR INC.SL INCREMENT SELECT POINTER
2949 3 SO IT FOINTS TO MEXT OPCODE.
2958 H (RELATIVE BRAMCHES ARE

2558 H RELATIVE TO NEXT OFCODE.)
2978 1ABY 63 PLA RESTORE OPERAMD BYTE TO ACC.
238@ 1ABA C988 crpP #8 IS IT PLUS OR MINUS?

2996 1ABC 1803 BPL FORMWRD IF PLUS, IT MEANS A FORWARD
3600 H BRANCH.

3619 H

3vza H OPERAND IS MINUS, SO WE' LL
3238 H BRANCH BACKWARD.

3948 1ABE CE@G1Z DEC SELECT+1 BRAMNCHING BACKWARD IS LIKE
3959 BRANCHIMG FORWARD FROM ONE

’
33508 H PAGE LOWER IM MEMORY.
3979 H
388A 3
3893 1ACL @8 FORWRD FHP SAVE CALLER' S DECIMAL FLAG.
3169 1ACZ D3 CLD CLEAR DECIMAL MODE, FOR
3116 ’ 3 BINRRY ADDITION.
31283 1AC3 18 cLc PREPARE TO ADD.
3138 1AC4 6D851Z2 AUC SELECT ADD OPERAMD BYTE TO SELECT.
3148 1ACTY 98133 BCC RELEMND
3158 1AC9 EEBBlZ2 INC SELECT+HL
3168 LACC 808512 RELEND STA SELECT NOW SELECT FOINTS TO ADDRESS
3178 H SPECIFIED BY RELATIVE
31817 3 BRANCH INSTRUCTION.
3139 1lACF 28 PLP RESTORE CALLER’ S DECIMAL
3209 H FLAG.
3219 1ADa ZBAlls JSR PR.ADR PRINT ANDRESS SPECIFIED
3228 H BY INSTRUCTION.
3233 1RAD3 ZBZBLS J5R POP.SL RESTORE SELECT=ADDRESS OF
3240 H OPERAND.
3258 1AD6 AZBL LOX #1 OPERAND HAD ONE BYTE...
3260 1ADS AUB4 LDA #4 AND FOUR CHARACTERS.
3278 1ADA 68 RTS RETURN TO CALLER.
3280 H
3290 H
3308 H
32108 H
33z. 3 ZERO PAGE MODE
3338 3
3340 H
3359 H
3368 H
32273 1ADB ASGB8 ZEROPG LDA #8 PRINT TWO ASCIiI ZEROD' S TO
3288 1A0D 286314 JSR PR.BYT ALL SELECTED BYTES.
3298 H (C-IP OWMNERS: SUBSTITUTE NOPS
3409 H -~£A EA EA--FOR J5R PR.BYT.
3418@ H TO GET MNARROW FORMAT.
3420 1AED 2BCE818 JSR ONEBYT PRINT OHE-BYTE CPERAND.
3438 1ARE3 AZOL DX #1 OFERAND HAS ONE BYTE...
3440 1AES ASB4 LoA #4 ...AMB FOUR CHARACTERS.
3458 H (C~IP COWNERS:AS 62,
3468 H NOT A3 %4, FOR MARROW FORMAT.)
3478 1AE? 68 RTS

294 BEYOND GAMES

3349
3358
3388
3974
3588
3938
48589
401@
45828
4833

4648
4558

1ARES
1AED
1AEE
1AFB

1AFZ

1AF3
1AFB
1aFg
1AFB

16FD

we we we ue wo ue

o

H
2ADB1A ZERO.X JSR

ZBEBL19
AZ31
[3=171=)

€9

we Wi wE ar we we ue

we

JSR
LDX
LoA

2BDB1A ZERC.Y JSR

28619
AzZuvl
AJae

=514)

ME WT W W W we uS

W wm W wE uE UT WE W as U we W WE ua WO A W W wa e

ZERG PAGE,

ZEROPG
XINDEX .
#1
6

ZEROQ PAGE

ZEROPG
YINDEX
1
#B8

X MODE

PRINT THE ZERC PAGE ADIRESS.

PRINT A COMMA AMD AN "X".
OFERAND HAS 1 BYTE...
«..AND SIX CHARACTERS.
(C~-IP OWNERS: A3 @4,

MOT A9 86, FOR MNARROW FORMAT.)

RETURN TO CALLER.

«Y MODE

(C-IP OWNERS: A9 84 HERE
FOR NARROW FORMAT.)

O S e e e R e e e a s St o

A PSEUDO-ADRDRESSING MODE
FOR EMBEDDED TEXT: TEXT MODE.

FHRRESHIEEFBFRPRBASBEEERBREREBFRABRER R BABD R LN

THE PSEUDO-OPCODE TEX (%7F) BEGINS ANY
STRING OF TEXT ANMD PRINT COMTROL CHARACTERS.
THE PSEUDC-TEXT CHARACTER ETX ($FF) ENDS ANY

295

4239

4198
4118
iz
4130
4148
4158
4160
4170
4182
4150
4zBe
4210
4220
4238
4249
42E0
4268
4z7@
4220
4239
4208
310
4328
4238
4243
4325m
4360
4279
4350
4352
4480
4410
44za
4438
4447
4450
4450
4479
4459
4453
4578
519
4528
4539
4549
4350
4560
457G
48E8
4559
4E98
4610
4522
4539

iAfFE

LAFF B

1BBZ
1B8S
1EB7T
1EGA
1EBGC
1BAE
1B1L
LELZ

1B1L4
1B1T
1B1R

[=2=

E8

ZB4314
18
SOEE

T

w we ue

SC U we we ms we WEows s MR e wr we

-

wa ws we we wa

SUCH STRIMG.

MODE: TEXT MODE.
STRING AND RETURN, WITHOUT DUMPING THE LINE
THE STRING MAY BE OF ANY LENGTH.

IN HEX.

MODE PLA
PLA

FLA
PLA

JSR
BMI
JSR
cMP
BEQ
JER
CLC
BCC

287214 TREXIT JSR

208317

€8

296 BEYOND GAMES

wa we

I we wr M wa We us wE WS us ue

we wr owe

we ws we ue

JSR
RTS

NEXTSL
TREXIT
GET.SL
H#ETA

TKEXIT
PR.CHR

TXMODE+4

CR.LF
NEXTSL

TEX HAS A PSEUDC-ADDRESSING
IN TEXT MODE, WE PRINT THE

PCP RETURN ADDRESS TO
OPERND.

FOP RETURN ADDRESS TO
DSLINE.

NOW DSLIME'S CALLER IS ON
THE STACK.

ADUANCE PAST TEX PSEURO-OP.
RETURM IF REACHED EA.

GET THE CHARACTER.

IS IT END OF TEXT?

IF S0, STRING ENDED.

IF NOT, PRINT CHARACTER.
BRANCH BACK TO GET MEXT
CHARACTER.

ADUANCE TO A NEW LINE.
ADURANCE TO NEXT OPCODE.
RETURN TO CALLER OF DSLINE.

HEFHBFEPEREBEBREFESREBRRRRFFREPBRRRERRBRSHIRE

TABLE OF ADDRESSING MOLE SUBROUTINES

s L g s s e e e S S Lttt

4540
4859
4653
4678
4658
4592
4789
4718
4728
4738

748
4758
4768
4778
4788
4798

1B1B

1B1D
1B1F
1BZ21
1823
1B2%
1BZY
1BZS
1RZB
1BZD
1B2F
1831
1833
1B36
1837

£81A

EE1R
€01A
DBlA
Eg1lA
F31A
4@1iA
481A8
531A
g31A
ACLA
801A
SBiA
7FLA
FELA

SUBS

. WORD

. MORD
. WORD
.WORD
JHORD
. {ORD
. WORD
.KORD
<HORD
. WORD
.WORD
. WORD
.HORD
.HORD
.WORD

IMPLID

ACC
IMMEDT
ZEROQPG
ZERQ.X
ZERO.Y
ABSLUT
ABS. X
ABS.Y
IMPLID
RELATY
IND.X
IND.Y
INDRCT
TRMORE

ADDRESSING MODE 8 IS INVALID,
HENCE IMPLIED.

297

Appendix C8:
Table-Driven Disassembler (Tables)

299

19

23

33

4

53

68

75

g4

28
188
119
1zZ8
139
148
158
169
i7a
ies
igd
28%
219
2289
234
243
258
2813
278
258
2588
303
319
328
338
343
=8
jGi=ta]
378
BB
jca=la]
4@a
418
429
439
440
459
458
478
488
498
S
Sla
528
5z@
54a
558
569
578

AT WE a ME uE s M WA MR ua WA wd we ee

wa

Wa we ws WS ue ue

s WE us wE MR wa uB WA ue ue wE WO we

-

e wE wh ME s W ME W we ue

We ME un e owe Y e

APPENDIX C8: ASSEMBLER LISTING OF
TABLE-DRIVEN DISASSEMBLER

TABLES

SEF CHAPTER 9 OF BEYOMND GAMES: SYSTEM
SOFTWARE FOR YOUR 6502 PERSONAL COMFUTER

BY KEN SKIER

HHEFBERERIRBLRBEFSREBREDEREBIRI DI OB RSP BRI BHRHE

CONSTAMNTS

SRFEBHERERSEBERREALRBERSRERSRBDHERRRAASHRESE

TEX

ETX

= $FF

THIS CHARACTER MUST START
ANY MESSAGE.

THIS CHRRACTER MUST END
ANY MESSAGE.

301

wr ws

DSFPAGE=$1320 STARTING PAGE OF DISASSEMBLER

[=y=ta] %*%$$$§$#5*$¥$$$$*##&****%*%%********#***3**
673
628
£s8
Taa
71g
729
723
748 1B53 =PSPAGE+$258
Kg=14]
TED
TG
TED
kg=1sl
880 1BSB 7F M
ela
829
830
246 1BS1 42 JBYTE * BAD'
845 1B52 41

g4 LBS3 44

g58 1B54 41 .BYTE °ADC’
850 1BSS 44

LIST OF MNEMONICS

$$%%#&#**#*#****#%#*#*%*%##***&***#%#ﬁ*%#**%

e we W wr WI we we 9T oy AT am WS e

AMES .BYTE TEX SINCE THIS TABLE IS A
STRING OF CHARACTERS, START
IT WITH THE TEX PSEUDO-OP.

PO L LB LB L L

@ 1BS7 41 LBYTE * AND’
5 1RSH AL .BYIE ° ASL’
LBSD 42 .BYTE ‘ BCC’
1EER 42 .BYTE ’ BCS’

1BEB3 42 .BYTE ’ BEQ’

= .BYTE " BIT
1868 54
1BES 42 .BYTE * BMI”
1EBA 4
1BER 42
1BEC 42 .BYTE * BNE’
1B50 4E
1EEE 45
1BEF 42 .BYTE * BPL’
1B7H 59

302 BEYOND GAMES

$S4a

a58

==y}

958

=115

568

g6a

ava

878

973

sed

a8

958

jeeia)

598

998
1209
1829
1998
1819
1618
1819
18Z8
1328
1928
1438
1932
1935
1848
1349
la4n
1654
1854
1656
1BE9
1252
159
187@a
1878
1279
10988
1282
1988
1889
jRaj=ln]
1890
116a
1199
Liga
111@
111@
111@
1128
1129
112@
1132
1137
1138

1B71
1B7Z
1B73
1B74
1B7S
1EB75
1B7Y
1B78
1B73S
1B7A
1B7TE
1B7C
1B7D
1B7E
1BYF
1889
1EB1
1882
1E83
1B34
1885
1RES
1B87
1B83
1B83
1BeA
1EB2B
1E8C
1BBD
1BESE
1BSF
1B98
1B31
1B22
1ES3
1834
1ESS
iB3S
1B57
1BSEB
1E3S
189A°
183E
1B2C
1EB20
1BSE
1BgF
1BR3
1BAL
1BAZ
1BR3
1BA4
18RS
1LERE

1BAT

LER2
1BR3
1BAA

4C
4z

48
42
o6

42
55
53

4C
43
43
4C

43
4C
43
43

56
43
4D
52
43
5@
53
43
50
53
44
45
43

44

53
44
45
59
45
4F
52
43
4E
43
49
4E
55
49
4E
53

.BYTE * BRK’

JBYTE * BUC

.BYTE * BUS’

.BYTE ’ CLC™

LBYTE ’ CLD

.BYTE " CLT"

LBYTE ° CLV

JBYTE * CHP°

.BYTE ’ CPX’

.BYTE ’ CPY’

.BYTE " DEC”

.BYTE ’ DEX

.BYTE ~ DEY’

.BYTE ’ EOR’

«BYTE * INC

JBYTE * INX

JBYTE C INY?

LBYTE 7 JMP”

JBYTE * ISR’

303

1149 1BAE 4C .BYTE
1146 1BAC 44
1147 1BRD 41
1153 LBARE 4C .BYTE
1153 1BAF 44
1159 1BEBE@ S8
1188 1BBl 4C .BYTE
1168 1BBZ 44
1i59 1BB3 88
1179 LEB4 4C .BYTE
1179 1EBS 53
1176 1BBB 52
1183 1BBY 4E LBYTE
1188 1BES 4F
1188 1BES 508
1138 1BBA 4F BYTE
1198 1BBEBE 52
1198 1EBC 41
1224 1BBD S8 .BYTE
1202 1BBE 48
1208 1BBF 41
1219 1BCE 53 .BYTE
1218 L1BCl 48
1219 1BC2 53
122% 1BC3 53 JBYTE
1220 1BRC4 4C
1228 1BCE 41
123m 1BCE S50 BYTE
1228 1BC? 4C
1238 1BCB 59
1248 1BCS 52 .BYTE
1248 1BCA 4F
1248 1BCB 4C
1z8@ 1BCC B2 .BYTE
1258 1BCD 4F
1254 1BCE 52
12E9 1BCF 52 .BYTE
1264 1BD2 54
1258 1BD1 49
1278 1BEDZ 52 LBYTE
1278 1BD3 54
127@ 1BD4 53
1288 1BDS S BYTE
1284 1BD6 42
1283 1BD7 43
1298 1BDS 52 -BYTE
128 1BR3 45
1299 1BDA 43
1398 1BERB 53 .BYTE
1388 1BDC 45
1286 1BRD 44
1318 1BDE 53 BYTE
1319 1BDF 45
1319 1BE@ 48
1228 1Pl 53 LBYTE
1328 1BEZ B4
1328 1BE3 41
1238 1BE4 83 .BYTE

304 BEYOND GAMES

s LDA

s LDX

s LY’

*LSR’

* NOP

’ ORAY’

* PHAY

* PHP

‘PLE

*PLP

*ROL

’ ROR’

*RTI’

*RTS

* SBCY

’SEC

* SED

*SET’

’STH’

*8TR

1328
1338
1348
1348
1348
1358
1358
1358
1368
1358
1368
1378
1379
137@
1380
1328
1388
133@
1398
1358
1429
1489
1408
1418
1418
1418
14289
1438
1448
1459
1459
1473
1488
1433
1568
1518
1528
1530
1548
1552
1569
1578
1528
1589
1589
ic1a@
1s28
1638
1549
1659
1668
1678
1689
1698
1vaa
iria
1728
1728

1EES 54
1BEG 58
1BE7 53
1BEG 54
1BEY 59
1BEA 54
1BER 41
1BEC 58
1BED 54
1BEE 41
1BEF 53
1BFE 54
1BF1 53
1BFZ 58
1BF3 54
1BF4 58
1BFS 41
1BFS 54
1BF7 58
1BF3 53
1BFS 54
iBFA 59
1EFB 41
1BFC 54
1BFD 45
1BFE 58

1BFF FF

1Cgg 22
1Cgl 8A

we o “

s us us we

M

) we as 90w uws ws ws WD ae w

BYTE * STY’

BYTE * TAX'

.BYTE * TAY" .

.BYTE * TSY’

BYTE ' TXA

BYTE * TXS’

BYTE * TYA'

LBYTE * TEX'

<BYTE ETX SINCE THIS IS THE END OF A
STRING OF CHARACTERS, USE
ETX TO INDICATE END OF TEXT.

E e e L R s e s

TABLE OF MNEMONIC CORES

FERBFHEEXPREIBREBEREBEBRP LS BBEEBRRR LR BRRBER

A MNEMONIC'S CODE IS ITS OFFSET INTO
MNAMES, THE LIST OF MNEOMIC NAMES.

ORES .BYTE $22,%6A,1,1,1.%5A0,%%A,1,4878

305

1729
1723
1729
1729
i7z8
17z9
17ze
1728
i7z2
173

1733
1738
1739
1730
1749
1749
1748
1748
1748
1749
17480
i74@
1759
1753
175w
1752
1758
1753
1752
1758
1768
1763
1768
17E9
1766
17E8
1768
1769
1778
1778
1779
1778
1778
1772
1778
1770
iv8a
1782
173@
1783
1782
1789
1729
1786
1798
1739
1733
1788

306 BEYOND GAMES

1caz
1Ca3
1Ca4
1T858
1CR6
1cav
1CoB
1Ca3
1CoA
1CeB
icac
1CBD
1CBE
1CaF
1C19
1Cil
iciz
1C13
iCl4
1Cis
1C16
iC17
1C18
1C13
1Cin
1218
1C1C
1C1D
1ClE
1CLF
1Cz28
1czi
1caz
1Cz23
1C24
1CzZ5
1Cz25
1C27
1Cz3
1C29
1Cza
1CZB
iczc
1CZD
1CzZE
1C2F
1C38
1C31L
1C3z
ic33
1C34
1C38
1C38
1C37
1C33
1C39
1C3A
1C3E

a1

-BYTE

LBYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

SEA, $2A, 1, 1, 96R,%8A, 1

$1F,$6A,1,1,1,%6R,%6A,1

%2B,%$6A,1,1,1,%6R,868A, 1

$58,7,1,1,%16,7,%$73,1

$76,7,%78,1,%16,7,%73,1

%$19,7,1,1,1,7,%79,1

$83,7,1,1,1,7,%73,1

1786
1729
1729
1728
1863
1802
jR=tars
1844
1686
1299
1889
1898
1819
1812
1813
1218
1819
1819
1218
1818
16829
1821
1828
1828
1828
1823
1823
1828
128329
1838
1838
1829
1839
1831
1828
1829
1849
1848
1849
1848
1849
1849
1248
1842
1853
1358
1858
1558
1852
1858
1559
18583
18693
1888
1368
1868
1869
1860

1C3C
1C3D
1CZE
1C3F
1C48
1C41
1c42
1C43
1Ca4
1C48
1C48
1C47
1C48
1C43
1C4R
1C4B
1C4C
1C4D
1C4E
1C4F
1Csa
1C51
1cs2
1C53
1C54
1C55
1C58
1C57
1CE8
1C59
1CSA
1CSB
1CsC
1C5D
1CEE
1C5F
1CEZ
1CB1
icez2
1CB3
1C64
1CE5
1CEE
1CB7
1C53
1069
1CBR
1CEB
1CBC
iCeD
1CBE
1CEF
1C79
1C71
icrz
1C73
1C74
1C7S

55
24
7C
81
22

231
ai
538
B4

.BYTE

LBYTE

.BYTE

.BYTE

«BYTE

-BYTE

.BYTE

$7F,%49,1,1,1,%49,964,1

%60, $49, $64, 1, %55, $49, %64, 1

$25,%49,1,1,1,%49,%64,1

$31,%49,1,1,1,%49,%64,1

$82,4,1,1,1,4,%7C, 1

$73,4,87C,1,9$55,4,87C, 1

$28,4,1,1,1,4,%7C, 1

307

1868
1588
1873
1874
1878
1678
18786
1a78
1878
1878
1808
i858
1828
igea
1889
1880
1829
1553
1898
1899
1858
1898
1899
1853
1886
1899
1969
1868
1563
1925
18ag
1989
1889
1968
1818
1918
1918
18189
1918
1818
1818
191g
1929
1524
1929
1923
19249
1828
1923
1929
1528
1928
1839
1838
1928
1933
1928
18za

308 BEYOND GAMES

1C76
1C77
1C78
1cra
1C7A
iC7B
icvc
1C7D
1C7E
1CTF
1Cea
icel
1C82
ice3
ico4
1CB5
1C86
1C87
icsg
1Ce3
1can
1CeB
1cac
1C8D
1CBE
1C8BF
1CS8
1Cg1
1Caz
1C33
1C54
1Cas
1Ca6
1cgr
1C88
1C89
1CsA
1CgB
icsc
1Csn
1CSE
1CSF
1CRB
1CAL
1CRZ
1CA3
1cA4
1CAS
1CRB
1CA7
1ChAg
1CRY
1CAA
1CAB
icAac
1cAan
1CAE
1caF

7C
38
B8E
B4

fAC

.BYTE $8E,4,1,1,1,4,%7C,%RC

.BYTE 1,%91,1,1,%37,%91,%34,1

.BYTE %46,1,%R3,1,%97,%91,%34,1

.BYTE $3D,$91,1,1,%97,%81,%34,1

.BYTE $R3,$31,%A3.1,1,981,1,1

.BYTE %51,%5B,%5E,1,%51,%58,%56,1

.BYTE $80,%5B,%9A,1,%61,%5B,%5E,1

1948
19408
1948
1948
1949

1940
1340
1943
1958
195@
1359
1559
1956
1959
1959
1953
1568

1960
1968

1968
19508
1969
1568
1568
1579
1972
1979
1978
1979

1978
1973
1979
1989
1988
1953
1986
1986
1989
1988
i9s@
1953
1858
199@
199@
1950
1998
1558
1993
2068
2039
2083
20820
2028
2090
2086
2088
2016
2016

1CBA
1CB1
1CB2
1CB3
1CB4
1CBS
1CBB
1CBY
1CEB8
1CBI
1CBA
1CEBB
1CBC
1CED
1CBE
1CBF
1CC9
1CClL
1ccz
1CC3a
1CC4
1CCH
1CCB
1CCy

1CCB ¢

1CC3
iCCA
1CCB
1CCC
1CCO
1CCE
1CCF
iCne
1CD1
1Cpz2
1Cn3
1CD4
1CO5
1Co6
1CD7
1Cns
1cog
1COAR
1CDB
iCpC
1CBD
1CDE
1CDF
1CEB
1CEL
1ICEZ2
1CE3
1CE4
1CES
1CEG
1CEY
1CE8
1CES

a1
21
a1
37
48
aL
2E
37
a1
3 8
a1
37
48
8L
3A

a1
B1
3A
85
4C
21

85

-BYTE

.BYTE

-BYTE

-BYTE

LBYTE

BYTE

JBYTE

.BYTE

¥10,%$58,1,1,%61,%58B,%5E, 1

$34, $5B: $9E, 1, %651, %58, $5E, 1

$3D,%37,1,1,$3D,%37,%48,1

$52,%37,%43,1,$30,837,%48,1

$1C,$37,1,1,1,%37,%406, 1

$2E,$37,1,1,1,%37.%$46,1

$3A,$85.1,1,%3A,$65,$4C, L

$4F,$85.%657,1,$3A,%85,84C. 1

309

2810
2019
2014
2818
2918
2018
2929
2629
2029
2828
Z2BZ0
2826
2829
2p2a
2838
2038
2830
2838
2728
2839
2638
2938
2048
2059
2869
2678
ZB38

Zg8a

2199
z110
2128
2130
Z143
2158
2168
2178
2180
2198
2208
2219
2228
2230
2249
2258
2268
2279
2288
2290
2398
2318
2328
2338
2339
2330
2336
2330
2329
2338

310 BEYOND GAMES

1CEA
1CEB
1CEC
1CED
1CEE
1CEF
1CF9
1CF1
1CF2
1CF3
1CF4
1CFS
1CFB
1CF7
1CF8
1CF9
iCFR
1CFB
ICFC
1CFD
ICFE
1CFF

1028
1031
1DG2
10823
1094
1085
1066

67
a1
3A
85
4C
Gl
13
85
a1
a1
a1
85
4C
a1
88
85
a1
B1
a1
85
4C
a1

12
18

0a

[515]
a5
4153

i

@r wE e ws e WP we s we WE we W WP we M wn owE WU ws

D wr wn we w8 ows ws ows W1 our wn

.BYTE $13,%85,1,.1,1,%85,8%4C,1

.BYTE $8B,%85,1,1,1,%85,%4C,1

FEARBERFRKEEERFEAREFRERBRDARFRER LRSS RBRERSLES
TABLE OF ADDRESSING MODE CODES

FHFIBBERERFRRBERRARRFEFBLRBPAAKBEARBBRELELER

AN ADDRESSING MODE’S CODE IS ITS OFFSET
INTO SUBS, THE TABLE OF ADDRESSING MODE
SUBROUTINES.

DES .BYTE 18,22,86.8.6,5,5.0

2333 1Da7 g

2348 1D88 12 .BYTE 18,4,2,8,98,12,12,8
2349 1DB3S 94

2345 108R 82

23248 1DBE B3

2346 10AC 25

2348 104D ac g
2348 108t ac

2243 1D29F 869 B

2259 1018 14 .BYTE 28,24.9,0,92,14,14,8
Z2E@ 1D11 i8 .

2358 1012 B9

2358 1013 268

2358 1014 a8

2352 1015 BE

2358 1iDle gE

232580 1017 98

2268 1D18 12 .BYTE 18,16,8,8.8,22,22,8

2364 1D1S 13

2360 1D1A 69

2360 1D1B 98

2360 1D1C 20

2388 1D1D 16

236 1DIE 16

1DIF B89

1022 8c .BYTE 12,22,0.9,6,6,56,8
10zl 18

1022 89

1DZ3 98

1Dz4 @8

1025 06

1DZE8 95

1D27 a3

1028 1 .BYTE 18,4,2,9,12,12,12,8
1023 94

ipza 62

iDZB
1pzc
1DZ2D
1D2ZE
102F 5
1038
1D31
1032
1033
1034
10325
1D28
1037
10338
2498 1033
2489 1D37
2458 1038
2498 1L3C
2408 153D BE

2420 1D3E BE

2400 1D3F 93

2418 1D48 12 .BYTE 18&,22,9,8.0,5,6,0

3
}

W03 0 00w W

L e e B B B e B X I

()

DU HIDIODRDIS
fucs 3 B o B
NOOOD

.BYTE 28.24,8,9.8,8,8,9

00y O Q)0 oW W W

WO BYWoWWLwONOoM

NNNNNNNNPNNNNNNNNNNDNMONNDNDNDNDN

0 W

S @EOIDNIIDVNIIITOEN

=)
S

.BYTE 15,16,9,8,8,14,14,8

=t
SR EINIATODIE LWL

IR~ 99

311

z41@
2416
2418
2418
2419
z2416
2418
2428
2428
2428
z426
z420
2422
2426
24283
2438
2439
24736
24329
2430
2433
24389
2433
2449
2449
2448
Z440
244&
2448
2448
2448
2453
2458
2453
24550
2453
2453
Z2458
2456
2458
2458
2459
2458
2459
24506
2489
2483
2479
2473
2478
2473
2478
2479
2478
2479
2468
2488
2488

312 BEYOND GAMES

1041
1042
1D43
1D44
1045
1D46
1047
1043
1548
1046
1D4B
1D4C
1040
1D4E
1D4F
1psa
1D51
1052
1053
1054
1DE5
1D55
1057
ipss
1053
105A
1058
1i05C
1DED
1DSE
1OEF
1065
1061
1052
1063
1054
1DES
1068
1DE7
1068
1DES
1DEA
1088
105C
1DED
1DBE
1DEF
1078
1D71
1072
1073
1074
1075
1D76
1D77
1578
1079
1D7A

B
a8
&3

85
2=
ag
1z
@c
s
s
ac
Be
aC

14
18

6]
a8
621
=
ug
1z
18

2ga
=a
@
Ge

jaf]
14
13
jadsi]
za
ag
jad=]
33
juls]
12
18
jada}

LBYTE

.BYTE

LBYTE

BYTE

JBYTE

.BYTE

.BYTE

18,12,2,8,12,12,12,8

20,24,8,0,2,3,8,8

18,16,9,8,8,14,14,8

18,22,9,8,6,6,6,8

ie,4,2,8,25,12,12,8

20,24,9,8,4,8.8,8

18,16,8,8.9, 14, 14,28

480
2482
2453
2489
2483
2453
pasiaiz)
25688
2568
25849
2599
2583
2588
2593
2513
2518
z518
2519
2519
zZ518
25183
2518
2529

S29
2520
25728
2529
2529
2528
2529
2520
2536
2538
2529
25328
2539
2529
2538
2548
2548
2549
2544
2549
2540
2548
2549
2559
2559
2559
2558
2558
2558
2553
2559
2568
Z5E5
2569
2588

1078
nvc
107D
107E
107F

1ines
1021
1082
ins3
1D84
i85
1088
1De7v
1033
1DBS
108A
1028
108C
1DED
1D8E
1LSF
1eg
insi
10s2
1083
1D84
inss5
1n3g
1537
1088
1083
1087
1DSE
ipsc
1090
1038
108F
1DAY
ibAl
1DAzZ
10Az
1DA4
1GARS
1088
1DAT
10R8
10A39
1088
ibAB
1BAT
1DARB
1DARE
10RF
1DBH
1DB1
1082
1DR3

i3

28

BYTE

<BYTE

.BYTE

LBYTE

LBYTE

.BYTE

BYTE

2,22,8,9,6,6,6,8

18,2,18,9,12,12,12,8

29,24.9,9,8,8,19,8

18,15,18,9,9,14,92.8

4,22,4,8,6,5,5,8

18,4,18,8,12,12,12.8

z29,24,9.,0,8,8,18,8

313

2560
25650
2568
25608
2578
2578
2579
2579
2578
2579
2573
2579
258a
2560
2588
2528
2568
2538
25380
25808
2538
2599
25898
25359
2550
2558
25308
2599
2629
2689
2508
2628
2689
2659
2683
2690
2619
2813
26192
Z519
2618
2619
2518
2613
2629
2629
2626
2628
2528
25828
2628
2628
2633
Z2E39
25323
pA=x14)
2630
2639

314 BEYOND GAMES

1DB4
1DES
10BEG
1087
1DBE3
1DE3
1DBEA
1DEE
1nec
1DED
1DBE
1DBF
1DCa
ipcl
1ncz
1DC3
1DC4
1DC5
1DC8B
10C7
1DC8
1ncg
10cA
1DCB
1DCC
1DCD
1DCE
10CF
1008
1DD1

1innz.

1DG3
1DD4
1005
1BDs
iRnjire
1003
jRzin
10DA
1DDB
1DDC
10030
1DDE
1DDF
1DES
1nEL
1DEZ
1DE3
1DE4
1DES
1DEG
1DEY
1De2
1DES
1DEA
1DEB
1DEC
1DED

23
a8
[iS]
B3

19
12
jaf4]
2E
BE
18
aa
B4
is
23
4]

aC

LBYTE

LBYTE

.BYTE

BYTE

«BYTE

+BYTE

.BYTE

z20,16,18.8,14,14,1%,0

4,22,8,9,5,6,6,8

18,4,18.9,12,12,12,9

z29,24.9,0,9,8,2.8

18,15,98,8.8,14,14,98

4,22,0,8,6,6,56,8

12,4,1i8,3.12,12.12,8

2639
2639
2648
2649
2648
2648
2648
z26408
2648
2649
2658
zZB58
2650
2650
2658
2658
2658
2659

.

1DEE
1DEF
1DF@
10F1L
1DF2
10F3
10F4
1DFS
1DF6
1DF7
10F8
1DF3
10FA
1DFB
10FC
1DFD
1DFE
1OFF

.BYTE 2B,24,9,02,0,8,8,0

.BYTE 18,16.9,8,8.14.14,09

315

Appendix C9:

Move Utllities

[

D &)
=~}
[

1496=

WE M we e w wa A we e

ME We aE WA uE WE WE WS WS wE WE W we WS ur W

eh we We us ME WE uE WS My WA Me WS WE uE W ws WP we Ws

AFPEMDIX C9: ASSEMBLER LISTING OF
MOVE UTILITIES

SEE CHAPTER 18 OF BEYOND GAMES: SYSTEMS

SOFTWARE FOR YOUR 6592 PERSONAL COMPUTER.:

BY KEM SKIER

BHEFEREEBEPFRUEEBEFEDEERRREEBRBERBERBRERFEHES

CONSTANTS

FRESSHPFESSBEPEESFEBIBLBBEESI I IR BL AR L RAIREED

CR=%8D CARRIAGE RETURM.

LF=%8R LIME FEED.

TEX=%7F START OF TEXT CHARACTER.
ETH=%FF END OF TEXT CHARACTER.

LHESBABFEEBFBERELRBERRBEIFBRERRESEBRERFREBEDE

EXTERMAL ALGDRESSES

FEEHBSESFEFFBERERSBERBEIBH AL RBRRPRERPRBSSBHE

UMPAGE=%1210 STARTING PAGE OF VISIBLE
MOMITOR CODE.

SELECT=UMPAGE+S
VISMON=UMPARGE+T

PRPAGE=%1443 STARTING PAGE OF PRINT CODE.

319

5399
=3%]4}
519
528
€38
648
658
=1=1%)
579
€80
£9a@
788
710
28
738
748
758
768
778
Kg=15)
798
869
g1\
829
833
848
859
868
878
8588
8909
8598
919
8z28
920
848
958
8969
a7a
1884
1818
1828
1838
1348
1656
1269
ieva
izes
1859
1168
1118
11z9
1138
iil4a
1158
1168
1179
11849

1498=
14E4=
1512Z=
152B=

1508=

15E3=

i7Ba

1552=

1554=

1789 89063 3!

17BZ2 @824 it

ouEog=
nagnz=

320 BEYOND GAMES

we wr WE ws we WY up

-t wr we us e WS w

e ws

= s e
2

e W un wh e ur e ur [T we en we ws

-

ST

TUT.ON=PRPAGE+B

PRINT:=PRFAGE+H$E4
PUSHSL=PRPAGE+$112
POPR. S5L.=PRPRGE+%$12ZB

HEX.PG=$1588 ADDRESS OF PAGE I WHICH
HEXDUMP COLE STARTS.
(HEXDUMP CODE STARTS AT
$155@0, BUT IT°'S EASIER TO
COUNT FROM %$1583.)

SETADS=HEX.PG+$ED

BBEEEEESEREEFSFEILERRBRBERRERLF LB PHPERRRKES

VARIABLES

FRBREBBRELBRBEFSR LS F SRS EBRLRE LRSS L LS PR RBRESE

*=%£17B@

SA=HEX.PG+$52 POINTER TO START ADDRESS
OF BLOCK TO BE MOVED.

EA=SA+Z POINTER TO END OF BLOCK TO
BE MOVED.
JWORD @ NUMBER OF BYTES IN BLOCK

TO BE MOVED. ZERO MEANS
BLOCK CONTAIMS 1 BYTE.

.WORD B8 POINTER TO BLOCK'S
DESTINATION.
GETPTR=8 THESE THO "PAGE POIMTERS®

PUTPTR=GETPTR+2 GET AND PUT BYTES.

1194
1298
1219
1228
1238
1248
1259
1269
1278
1269
1259
1388
1318
1329
1238
1345
1350
1368
1378
1320
1399
1298
1338
1486
1463
1488
1488
1408
1409
1462
1489
1489
1408
1489
1482
1460
1452
1480
1418
1418
1418
1419
142

1438
1448
1459
1462
1479
1489
1438
1509
1sia
1529
1539
1548
1550
1561
1578

1784
1787
17BER
17EE
17EBC
17BD
17BE
17BF
17ca
17C1
17CZ
17C3
17C4
17CS
17C8
17C7
17C2
17CS
17CA
17CE
17CC
17CD
17CE
17CF

1703

1703

we wv Wl e ad ws

s WE wp W Ve ul WE W W owe Wl W

FEBERRFEPLBHBEREAFBRBERRBEEBRREB LB LRI BRBRES

MOVE TOOL.

FEFERBEBEBREPRERRBFEFERIRRE RS RESHRBSHLFHBDHS

£
223814 MOVER JSR TUT.ON SELECT SCREEN FOR OUTPUT.

202414
7F
20
2A
20
28
z%
2@
2%
4D
ar
55
45
2@
54
4F
4F
4C
2E

2R

"o

ws ME wg we W e

e wr we ws

JSR PRINT: DISPLAY A TITLE.
.BYTE TEX,CR,LF

-BYTE ° MOVE TOOL.”

.BYTE CR,LF,LF,ETX

JSR SETRDS GET START ANDRESS, END
ADDRESS FROM USER.

JSR SET.DAR GET DESTINATION ADDRESS
FROM USER.
WITH THOSE POINTERS SET,
WE’ RE REARY TO EXECUTE MOV.ER:

FEPEEFEPEEERRBERFBASFERS A S PRI XERLBER R LRI DRSS

321

1589
1593
1€99
1613

1629
16329

1648
1653
1668
1678
1688
1698
1788

1719

1738
1749

1758
1768
177@
1768
17989
1898
isig

iezg
1828
ig4a
1852
1868
1878
1886
1532
1923
1918
1929
13386
1943
1958

1968
1978
1982
1959
2689
2919
2923
ZB32
2949
2853
26608
2879
2889
2858
2108
2113
2138
2149
Z158
2168
2178

o=

PoFF=

1706
1703
170A
170D
17EB
17E3
17ES
17EB
17E7
17e8
17EB
17EE

17F8
17F2

17F3
17F5
i7ra
17F3
L7FR

17FC
17FD
12064
1893
1e8s

. e we WE WE WE WP WE WN W W ws

s

. o we

MOV, EA:

MOVE BLOCK SPECIFIED BY SA, EA., DEST

KBABEHEBPRFBRFIEBRBRBRBEFRBLBBER PRSP ELLRRBRFILBASR

RETURN

CODES:

ERROR=0

OKAY=5FF

g
AESS515 MOV.EA LDX

EA+l

EA
SA
MM
MOVE. 1

S5A+1
NUM+1
PIOVHUM

#ERROR

THIS RETURN CODE MEANS
A < EA, S0 MOVE ABORTED.
THIS RETURN CODE MERNS
MOVE. RCCOMFPLISHED.

SET NUM = ER - SA:

IF EA < SA,
RETURN MITH ERRCR CODE.

FEBFERERPELFBEEERERRERRRRBABBR R B BABBEBRLLRH

MOUE BLOCK SPECIFIED BY SA, NUM, DEST.

FLEEBRBEEBBBPREREBFRBEBPRLEERBRBBERRRER RS S

35 SEC
ADS415 LDA
ENSZ15 SBC
SDEB17 57TA
BBBZ2 BCS
CA BEX
28 SEC
8A MOVE.1 TXA
EDE31S SBC
8DB117? sTA
BEHG3 BCS

2
A923 ER.RTN LDA
Sz} RTS

H

£

1

k]

3

3

3 MOUNUM:

H

H

3

t

H
AZA3 MOUNUM LTY
P9936@ LOOF.1 LIA
48 PHA
8 DEY
18F9 BPL

H

3
38 SEC
ADS315 LDA
CDBE317 CHMP
IB4a BCC
D318 BNE

322 BEYOND GAMES

+3
GETPIR, Y

LOCP.1

SA+1

DEST+1
MOVEUP
MOVEDN

SAVE ZERO PAGE BYTES THAT
WILL BE CHANGED.

IF DEST>3A, BRAMCH TC MOVE-UP

IF DEST<KSA, BRANMCH T

NNNNMNDNNDNNDDNS
O30} W 0L @ NRN
i I IS TR A o s B I K

ool W™ = W

NNNNN
oAU W
9 w03
[IR O R)

2428

2438
2448
24508
2483
2478
Z483
2433
2563
2519
2528
2538
z2545
2550

D)

B b Pt
[5 A0 sl 1 MV R
AR
- T D

-

1813
1814
1817
1818
181R
ig1c
181E

iB81F

1822

1824

1829
1828
18zD

182

18329
1832
1834
1835

1837
18238
1833
1838
183D
1843

4 1842

1845
1848

we

ADSZ1S

CDB217

9836

jiaial

[zia1a4] OK.RTHN

£
58 LoorP.2
859920
cs
cea4
DOFT
AIFF
6@

H
v

2BA418 MOVEDN

we ae

[atadaja]

e e

AEB117

FEgE

D e s e

B1E3 P
3182

ca

Lers

GEDN

£681
EB83
A

Darz

[o v

€3 L
c8

BEl1D9
S192
CCEBLY
Dors
4C1113

SSDN

i oee

3
FDB117 WOUEUR
F@4s

LR
CMP
BCC
BNE
LDy

PLA
STAH
INY
CPY
BNE
LoA
RTS

JSR

Loy

LDX

BEG

LDA
STA
INY
BNE

INC
INC
neEX
BNE

DEY
Iy
LDA
STAR
CPY
BHNE
JMP

LDA
BEQ

SA
DEST
MOVEUP
MOUEDN
#9

GETPTR,Y
#4

LOOR.Z2
FOKAY

LOPAGE

#a

NUM+1

LESSDN

(GETPTRI, Y
(PUTPTR),Y

PAGEDN

GETPTR+1
PUTFTR+1

PAGEDN

(GETPTR),Y
(PUTPTRD, Y
NUM
LESSDN+1
OK.RTN

NUM+1
LESSUP

MOVE-DOWN.

IF DEST=SA,

RETURN BEARING “OKAY" CODE.
RESTORE ZERO PAGE BYTES
THAT WERE CHANGED.

RETURN W/ "OKAY*" CODE.

SET PAGE POINTERS TO LOWEST
PAGES IN ORIGIN, DESTINATION

BLOCKS.

INITIALIZE PAGE INDEX TO
BOTTOM OF PAGE.

USE ¥ TO COUNT THE NUMBER

OF PAGES TO MOVE. MORE THAN

ONE PAGE TO MOVE?
IF NOT, MOVE LESS THAN A
PAGE.

IF S0,

MOUE A PAGE DOMN,
STARTING AT THE BOTTOM.
INCREMENT PAGE INDEX.
IF PAGE NOT MOVED, MOVE
NEXT BYTE...

INCREMENT PARGE POINTERS.

DECREMENT PAGE COUNT.
IF A PAGE LEFT TO MOVE,
MOVE IT AS A PAGE.

MOVE LESS THAN A PAGE
DOWM, STARTING AT THE
BOTTOM.

MOVED LAST BYTE?

IF NOT, MOVE NEXT BYTE...
IF SO, RETURN BEARRING
"OKAY" CODE.

MORE THAN A PAGE TO MOVE?
IF MOT, MOVE LESS THAN A
PAGE.

323

| 273m
2748
2758
z7en
2778
278@
z7sa
2800
2810
2829
2835
2848
2858
2260
2873
2830
2898
2928
2918
2920
2938
234
2950
2560
2979
z92a
2338
3028
3019
3uzy
3833
3048
3vse
3960
3670
3088
3099
3109
3110
3128
3139
3140
3153
3160
3178
3180
3199
3200
3218
3228
3220
3243
3250
3268
3279
3280
3288
3300

184A
1840
185
18561
1853
1865
1856

1857
1853
1850
1858
185E
1268
1862

1863
1864
1867

1869
186A
1868
186E
187a
ig87z2

1874
1875
1878

we

YRR T

ar W we e

ACB117
ADBB1LY

38

ESFF

BoGBlL

88

AA NEXT. 1

Be e wa we we

s

*
88 NEXT.Z2
505315
8581

s we wa us

ws

8A

18
60BZ17
8582
983z
E683

5

H
A563 NEXT.3
5DB317
8583

ar

we W

324 BEYOND GAMES

LDY
LA
SEC
SBC
BCS
DEY
TAX

sSTY
THA
Ci.C
ADC
sTA
BCC
INY

TYA
REC
5TA

TXA
CLC
RIC
sT8
BCC
INC

Loa
ADC
STR

NUM+1
NUM

#3FF
NEXT.1

PUTPTR+1

SA
GETPTR
NEXT.Z2

S5A+1
GETPTR+1

FTR=5A+NUM-SFF .

DEST
PUTPTR
MEXT.3
PUTPTR+1

PUTPTR+1
DEST+HL
PUTPTR+1L

TO MOVE MORE THAMN A PRGE,
SET PRAGE POINTERS TO
HIGHEST PAGES IN ORIGIN,
DESTINATION BLOCKS.

TO DO THIS, FIRST

SET (X,Y) = NUM - $FF,
(RELATIVE ADDRESS OF
HIGHEST FPAGE IN A BLGCK.)

NOW (X,Y¥) - NUiM - SFF.
X 15 LOW BYTE, Y IS HIGH BYTE

(LAST PAGE IN SCQURCE BLOCK.)

MOW PUTFTR=DESTHHUM-$FF .
(LAST PAGE IN BEST BLOCK.3

ok
5 ®

SURNITIRCA NN VN O N SV T3 R VA
D) 0) W)W

3488
34193
34249
3432
3448
3450
34E8
3478
3458
3486
35588
3518
529
3534
3548
3558
3553
3573
3528
355a
3616

) £ @ R

SRR U

3868
38703
38ea
3888

1878

1885

[l el i
Mmoo m
Mmoo 0
Mot

1252

1895

= e e et e B
UJ\ZDP?’JOJD?%
(S = B s)

Do @

AEBR1LT

ABFF

B128
9162

55

Dorg

Bi03
9182
CBEL
cea3
CA

DBEC

-

. we

-5
T oas wr

s ur O .

Pl

wr our owe

LDK

EUP LDY

OP.3 LDA

STA
DEY

BNE

LDA
sTA
DEC
DEC
DEX
BNE

20R418 LESSUR JSR

ACEOLY

B16G
3182
88
CBFF
D8F7
4C1118

Loy

H
MOVE.S LDA

P L R L]

ME e us ws W owe

i as wr owe e

wr we

we we

STA
DEY
CPRY
BhE
Riyis

HUM+L

FEFF

(GETPTRI,Y
(PUTFTR),Y

LOOP.3

(GETPTR), Y
(PUTPTRI,Y
GETPTR+1
PUTFTR+1

PAGELP

LGPAGE
NUM

(GETPTRI,Y
(PUTPTR),Y

FBFF
FOVE.B
OK.RTN

LOAD ¥ WITH HUMBER OF
FAGES TO MOVE.

SET PAGE INDEX TQO TOP OF
PRGE.

MOVE A PAGE UP, STARTING
AT THE TOP OF THE BLOCK.
DECREMENT PAGE INDEX.
ABOUT TO MOVE LAST BYTE
IN PRGE?

IF NOT, HANDLE NEXT BYTE.
AS BEFORE.

IF S0, MOVE THIS BYTE FROM

SOURCE TO DESTIMATION.

DECREMENT PAGE POINTERS.
DECREMENT PAGE COUNTER.

IF A PAGE LEFT . TO MOVE,

MOVE IT AS A PAGE....

MOUE LESS THAN A PRGE UP,
STARTING AT THE TOP.

COPY A BYTE FROM ORIGIN
TO DESTIMATION.
DECREMENT PAGE INDEX.
COFIED THE LAST BYTEY

IF HOT, HANDLE AS BEFORE...

IF S0, RETURM BEARING
"OKAY" CODE.

SET PAGE POINTERS TO BOTTOM OF

ORIGIN,

DESTINARTION BLOCKS.

325

3999
3316
3529
3339
3343
3958
3968
3978
3989
32539
4209
4013
4329
4230
4248
4058
4869
4078
4588
4239
4160
4110
4128
41329
4149
4158
4159
4173
41en
41908
4200
4218
4220
4233
4249
4259
4269
4270
4280
4299
4288
4310
4319
4318
4328
4329
4328
4328
4328
4328
4328
4328
4328
43zZ@
4324
4320
4329
4328

18A4
18A7
18A3
18AC

18ARE
1881
1883
18B6

15B9
18BC
1BBF
16Ca
18C1
18C2
18C3
18C4
18C5
18C85
18C7
18C8
18C9
18CA
18CE
18CC
18CD
18CE
18CF

ADSZ15 LOPAGE LDA
8529 STA
ADS315 LoA
8531 SR
5
H
ADBZ17 LA
2582 STA
ADB317 L OA
8583 STA
H
3
69 RTS

zp@814 SET.DA JSR TUT.ON

Z2BE414
TF
20
BA
53

45

326 BEYOND GAMES

M we e b A WE WE WE uN Ga s W8 ws e

wn

WE ws wR oan ue W uwe

s s WE we

SA
GETPTR
SA+1
GETFTR+1

DEST
FUTFTR
DEST+1
PUTPTR+1

Frerrrrrrrrerree e s PRI S s L S S R a S S A S

LET

USER SET DESTINATION ADDRESS

FEEEESFERRIERERRFLLEB SR BBBRIB SR EBRERIEBEFEER

JSR

LET USER SET DESTINATION
PRINT:

.BYTE TEX,CR,LF

BYTE ’ SET DESTINATION AND PRESS Q.7

4328
4328
4329
4326
4328
4329
4329
43728
4329
4328
4220
4328
4328
4329
4338
249
43593
4369
3vg
43083
4384
4494

1808
16D1
1802
1803
1804
1805
1306
1807
1208
1803
1308
1808
18nc
183D
180E
i8DF
18e2
1955
13E8

1868

ZE
FF

zeav1z
ADZS12
anez1v
AOE512
SUB317

50

DRHERE

wa

.BYTE ETX

J5R VIGHMON LET USER SET AN ADDRESS.
LOA SELECT SET DEST=SELECT.

STA LEST

LA SELECT+L
57A DEST+1

RTS RETURM WITH DEST=5ELECT.

327

Appendix C10:

Simple Text Editor (Top Level and
Display Subroutines)

329

218
228
229
248
259
268
g
289
288
309
3ie
323
328
342
358
368
3va
3ca
329
428
419
4zd

430 2

4480
452
468
474
481
494
=1ala)
€12
=¥du}
©3a
S48
558
568
s7d
583

PB49=
DB4F=

s we Wwh WE Wh wa WA WE M@ wo WP us WA WF wE WE WS WE WA WH WS Wws WE WD Wi WS WS WE @ ax W e BT we

we we ws uwn -e

s W we W we wi WE ut ws we

APPENDIX C1@: ASSEMBLER LISTING OF
A SIMPLE TEXT EDITOR
TOP LEVEL AND DISPLAY SUBROUTINES

SEE CHAPTER 11 OF BEYOND GAMES: SYSTEMS
SOFTWARE FOR YOUR 6582 PERSONAL COMPUTER

BY KEN SKIER

Frrrrrerrrrrrer e st RS PR L L AR S L Ll S s L S L e

COMSTANTS

BRBFBEFFRDREBBRFFEFRPERREISBEFPERERPREREBREE

CR = %BD
LF = $8A
TEX = $7F
ETX = SFF
INSCHR=" T
OCURCHR="0

CARRIAGE RETURN.

LINE FEED.

THIS CHRRACTER MUST START
FANY MESSAGE.

THIS CHARACTER MUST END
ANY MESSAGE.

GRAPHIC FOR INSERT MODE
GRAPHIC FOR OVERSTRIKE MODE.

BESBHRESREBPELRFZAAIRRRRBRPREBRREFIRBEPREEERS

EXTERMAL ADDRESSES

331

593

s
(=1} H -‘57)5%**'*Q**%**#****%#%***%%*%***%**##%*%%**#**
510 3
525 H
£33 5
4@ Ooag= TU.PTR=0 POINTER TO A SCREEN ADDRESS.
S0 15aa= PARAMS=$1088 SYSTEM DATA BLOCK.
6ca 3
673 ;
€88 1993= TUCOLS=PARAMS+3
697 1m@4= TUROWS=PARAMS+4
T80 1857= ARROW=PARAMS+7
718 3
7za 3
730 ;
746 119@= TUSUBS=%11808
758 1113= CLR. XY=TUSUBS+$13
768 112B= TUHOME=TUSUBS+32B
778 113C= TUTOXY=TUSUBS+$3C
780 1176= TUDOWN=TUSUBS+$7E
798 117F= TUSKIP=TUSLIBS+$7F
569 llgi= TUPLUS=TUSUBS+S81
818 118B= TU. PUT=THSUBS+%$9B
820 11Aa3= UUBYTE=TUSUBS+SA3
838 11C4= TUPLISH=TUSUBS+$C4
84@ 1i02= TU.POP=TUSUBS+$D3
850 3
850 H
878 120@8= UMPRGE=$1288 STARTIMG PAGE OF VISIBLE
885 3 MONITOR CODE.
858 1205= SELECT=UMPAGE+S
azg 1294= GET.SL=UIPAGE+%$94
918 139D= INC. SL=UNPAGE+F16D
23 131A= DEC. SL=UMNPRGE+$11A
937 3
940 3
350 148%= PRPAGE=$148@ STARTING PAGE OF PRINT
968G 3 UTILITIES.
97@ 14@8= TUT. ON=PRFAGE+8
S88 140F= TUTOFF=PRPAGE+SZE
998 1414= PR.ON =PRPAGE+$14
1988 141@= PR. OFF=PREAGE+$ 1A
1B1D 1440= PR. CHR=PRPAGE+$43
1023 14E4= PRINT: =PRPAGE+$E4
1928 1512= PLISHSL=PRPAGE+$112Z
1848 152B= FOP.SL=PRPAGE+%12B
1850 3
1069 ;
1978 1580= HEX.PG=§15@7% ADDRESS OF PAGE IN WHICH
=t H HEXDUMP CODE STARTS.
1838 ;
1193 1552= SR=HEX.PG+E52
1118 1554= FA=SA+Z
1120 15E3= SETADS=HEX. PG+3ED
1135 1783= MEXTSL=HEX.PG+$283
1148 17AG= GOTOSA=HEY. PG+E2AG
1159 3
1168 :

332 BEYOND GAMES

1173
118@
1i94@
1229
1z19
1229
123@
1z49
1259
1268
1279
1288
1254

jc1%}%]
1318
1529
1338
1349
1359
1369
i37a
1384
1259
1480
1418
1428
1430
1443
1458
1454
1478
1450
1459
1589
1518
1528
1538
1543
1558
1560
1578
15589
1559
1568
1519
1628
182@
1644
1554
1869
1673
1588
1598
1758
171ig
1728
1733
1748

1E09=
1ECE=

1E@3

1EB8 @8
1EB1L 98

e aE W wa wr us we WA we WA we uE W We

ws we we

EDFAGE=%$1E00

STARTING PAGE OF EDITOR.

EDITIT=EDPAGE+ECS

s S g s S

UARIABLES

FFHELEBEERFF ISR FRS BB REREFRERBEPEERR SRR RS RS

*=EDPAGE

COUNTR .BYTE B
EDMODE .BYTE @

e WP WE ws WE ws uy ue

ws We wa we

we we wa

COUNTER USED BY LINE.Z2.
FLAG: @=0VERSTRIKE,
1=IMSERT.

FHEFEPEPEERESEFEBERFREP LA BI LI LRRBRFLLALRERLBHRE

TEXT EDITOR: TOP LEVEL

REBBFFEERBBRBEBEEBREIBSHEREFFEBBE SR REBH B RN SEHHH

1EGZ 29%FlE EDITOR JSR SETEUF
LE@S 2B371E EDLOOP JSR SHOWIT

1E88 2eCBlE

1EGE 18
1e£8C 18
1E8D SgF6

we

WP Wa we us WK WE Wk MR Ga e NN e

e

JSR EBITIT

CLC
CiLC
BCC EDLOOP

INITIARLIZE BUFFER POINTERS.
SHOM USER A PORTION GF

EDIT BUFFER.

LET THE USER EDIT THE BUFFER
OR MOVE ABOUT WITHIN IT.

LOOP BACK TO SHOW THE
CURRENT TEXT.

FHEEEEHRFSESEPEREBEEREEERERBBEA R LS BEBL RS % S

INITIALIZE BUFFER POINTERS

333

17508
1760
1779
1789
173993
1860
18168
1829
1836
1839
1839
1833
1848
1848
1848
1840
1840
1842
1846
1840
1848
1849
1849
1849
1848
1848
18544
1848
1848
1848
1840
1859
1859
1859
pR=ist
1863
1878
1886
1899
1sea
igia
1828
1930
1849
1358
1368
1978
1989
1359
2089
2028
2838
2848
28538
2666
2878
2982

2199

H
3 BEFEEFEEBBEBIEREEFERERRASEBEREBBREERERFABESS
H
3
i
i
1E@F 298814 SETBUF JSR TUT.ON SELECT SCREEN.
1E12 208E414 JSR PRINT: DISFLAY "SET UP EDIT BUFFER.®
1ELS 7F .BYTE TEX,CR,LF,LF
1E16 8D
1E17 2A
1E18 2A
1E19 53 .BYTE ’SET UP EDIT BUFFER.
1E1R 45
1ELB 54
1ELC 29
1E1D 65
LELE 58
1ELF 28
1E28 45
1EZ1 44
1EZZ2 49
1E23 54
1E24 Z@
1EZ25 42
1E26 &5
1E27 48
1EZ28 46
1EZ29 45
1EZ2A 52
1EZB ZE
1E2C @D LBYTE CR,LF,LF,ETX
1EZD BA
1EZE 2A
LEZF FF
1E30 Z2BE31S JSR SETADRS LET USER SET LOCATION AMD
3 SIZE OF EDIT BUFFER.
1E33 Z2BRBLTY JER GOTOSA SET SELECT=S5TART OF BUFFER.
1E£36 69 RTS RETURN TO CALLER.
H
k)
’
E]
£
H
H
’
H DISPLAY A PORTION OF EDIT BUFFER
H
s
E
H
*
H
1E37 20C411 SHOWIT JSR TUPUSH SAVE THE ZERO PRAGE BYTES
H WE” LL USE.

334 BEYOND GAMES

2128
21192
2129
2139
2142
2150
z21608
2i7a
2188
2190
22688
2219
2228
2238
2248
2258
2269
2278
2283
2298
2383
2318
2323
2338
2348
353
268
2378
2389
233809
2486
2419
2428
24328
2443
2458
2458
2473
2488
2439
2508
2516
2528
2539
2549
zZ558
2568
2578
25808
2524
pat=tslu]
2619
252
28329
2648
2850
Z2EC0
2678

1E3D
1E49
1E4Z

1E45

148
1E4B
LE4E

1EGL
1ES4

1EG7

1E58
1ESD

1ESE
1E61
1EG4
1E65
1E66
1E67

1EG8
1EGB
1E6C

1EBE
1E71

1E7T4

292811

REB313
283
281311

20ZB11

207611

ZBC411
2OSELE

280311

237611

28831E

220311
[=3a]

- e e

-

wr o

. we as we we

@r WE Ge wE w8 wa NP uE ua WY ul we

 wn

JSR

Lox
LDY
JSR

JER

JSR

JSR
JSR

JSR

JSR

JSR

JSR
RTS

TUHOME

TUCOLS
#3

CLR.XY
TUHOME
TUBOWN

TUPUSH
LINE.Z2

TU.POP

TUDOKWN

LINE.3

TU.POP

SET HOME POSITION OF EDIT
DISPLAY.

CLEAR THREE ROWS FOR
THE EDIT DISPLAY.

RESTORE TU.PTR TO HOME
POSITION OF EDIT DISPLAY.
SET TU.FTR TO BEGINNING
OF LINE TWO AND SAVE IT.
DISPLAY TEXT IN LINE THO.

SET TVU.PTR TO BEGINMMING OF
CF THIRD LINE OF EDIT
DISPLAY.

DISPLAY THIRD LINE OF EDIT
DISPLAY.

RESTORE ZERC PAGE BYTES USED.
RETURN TO CALLER, WITH EDIT
DISPLAY 0OM SCREEN, REST OF
SCREEN UMCHANGED, AND ZERO
PAGE FRESERVED.

BREEHEBFREBESERRERREEBHSSPB SR IIREARBHARERDRE

DISPLAY TEXT LINE

FHEBBERBRBFEBRERBESEBBRLESEFRRBFDARBREBRAEES

s
281215 LIME.Z JGR

ROB319
4n
Af
CA
CA

L.DA
LSR
TAX
DEX
DEX

H
281A13 LOOF.1 JSR

CA
1850

ADB318
EDRg1E

DEX
BPL

LA
STR

2839412 LGOP.Z JSR

PLSHSL
TUCGOLS
A

DEC. 5L

LOOP. 1

TUCOLS
COUNTR

GET.SL

SAVE SELECT POINTER.
SET X EQUAL TO
HALF THE WIDTH
OF THE SCREEN.

DECREMENMT SELECT...

ek TIMES.

INITIALIZE COUNTR.

(WE"LL DISPLAY TUCOLS
CHARACTERS.)

GET A CHARACTER FROM BUFFER.

335

2620 LET7? 289511 JSR TU.PUT PUT IT ON SCREEM.

2838 1E7TA 207F11 JER TUSKIR GO TO NEXT SCREEN POSITION.
2vag 1ETD ZBEUl3 JSR IMC.SL ADVAMCE TO NEXT BYTE IN
2718 H BUFFER.

2723 lEBG CEBTIE BEC COUNTR DONE LAST CHARACTER IM ROWT
2738 1EB3 1ZEF BPL LOCP.2 IF NOT, DQ NEXT CHARACTER.
2744 3

2758 H

276D 1EBS 282ZB1S JSR POP.SL RESTORE SELECT FROM STRCK.
2778 1EE8 ©8 RTS RETURN TO CALLER.

2759 H

2799 H

28823 H

2814 H

2828 H

2828 3 REBEBREFBRERBEEBBERREEBESRRFFRBBSERFRDIESEHS
2843 H

2059 H DISPLAY STATUS LINE

28E8 H

2879 HIE S 2L s T s S T e R P)
2888 H

2638 3

2933 H

2318 H

2328 H

2923 123 ADA318 LINE.3 LDA TUCOLS SELECT CENTER POSITIONM...
234@ 1EBC <€A LSR A A=TUCOLS /2

2956 1ESD ESZZ SBC #2 A=({TUCOLS,Z3~2

2563 1ESF 298111 JSR TUPLUS NOW TU.PTR IS POINTING TWO
2978 3 CHARACTERS TO THE LEFT OF
2383 H CENTER OF LINE 3 OF THE
2338 H EDIT DISFLAY.

3983 1E9Z ADBILE LA EDMODE WHAT IS CURRENT MODE?

38186 1£95 C381 CHP #1 IS IT INSERT MODE?

3028 1E87 1855 BNE OUMODE IF NOT, IT MUST BE OUERSTRIKE
38934 H MODE.

38448 1ES3 R348 LA #FINSCHR IF S0, GET INSERT GRAPHIC.
3058 1E9B 18 CLC

3080 1ESC Sz BCC TUMODE

3879 1ESE AS4F CUMODE LDA $OURCHR LOAD A W/OVERSTRIKE CHARACTER.
3289 1ERD 282SB1l1 TUMODE JSR TU.PUT PUT MODE GRAFPHIC ON SCREEN.
38383 1ERZ RSBz LoA #2 MOVE TWO POSITIONS TO THE
3198 1EAS 288111 JSR TUPLUS RIGHT, S0 TU.PTR POINTS TO
3118 3 CENTER OF LINE 3 OF EDIT
31298 H DISPLAY.

3130 1EAS ADAT1H LDR ARROW DISFLAY AN UP-ARROW HERE.
2148 1EAB 2B9EB11 JSR TU.FUT

3159 3

31EY 1ERE ASH2 LoR %2 G0 THO FOSITIONS TO THE
3173 1EEB@ 283111 JSR TUPLUS RIGHT, SO TU.PTR FPOINTS TO
3158 H FIELD RESERVED FOR THE
3198 H RDORESS OF THE CURRENT CHARACTER
3228 1EB3 ARDGE12 LDA SELECT+1 DISPLAY ADDRESE OF CURREMT
3219 1EBS 28AZ11 JER VUEBYTE

32z2@ 1EETS ADBSiZ LDR SELECT

3233 LEBC 28A3LL JSR UUBYTE

3248 H

3252 1EEBF 69 RTS RETURN TO CALLER.

336 BEYOND GAMES

Appendix CI1 |:

Simple Text Editor (EDITIT
Subroutine)

337

19

s]

28

45

53

=14)

72

p=15]

Sg
1pa
118
129
132
149
1583
168
179
188
198
z280
219
229
258
24a
250
258
278
228
288
33
3ia
2z3
328
248
359
268
378
289
332
403
418
429
438
441
4508
458
47a
488
4359
569
518
528
528
549
5ca
568
s7e

65B=

BE NS e Me P AN ws we B Wl WE we WE US wE We wa WD s wE We ws WP

we WO us wr we

W us we we W wp

- we W we wE WS ga

Mo WS we ws ws we

APPENDIX Cli: ASSEMBLER LISTING OF
A SIMPLE TEXT EDITOR
EDITIT SUBROUTINE

SEE CHAFTER 11 OF BEYOND GAMES: SYSTEMS
SOFTWARE FOR YOUR 6522 PERSONAL COMRPUTER

BY KEN SKIER

HEBERERLEREEBERRBRAE I BB BBERFEERRBEBBERERERSE

COMSTANTS

HRBBRERBBEBRELRLRESRFBERB B A RS ERE LSS RBBIRER

CR = £8D CARRIAGE RETURN.
LF = $on LINE FEED.
TEX = $7F THIS CHARACTER MUST START

ANY MESSAGE.

ETX = SFF THIS CHARACTER MUST END
ANY MESSAGE.

BEELUEEREPSRFEREEPFRPRPARRBRELIRARDLILBRRIBRE

EXTERMNAL RDDRESSES

339

FREBREEHLLBEFEEEBIAEREFEBPEBRBRFERBRBRE RS EFE

UMPAGE=$1202 STARTING PAGE OF VISIBLE
[=iYa] H MONITOR CODE.

n
£
)
b=
Ny
=
&
[

£50 1285= SELECT=UMPAGE+S
678 1287= VISHOMN=UIPAGE+Y
E39 1234= GET. SL=UMPAGE+$34
593 12E@= GETKEY=UMFAGE+SED
oD 1300~ INC.SL=UNPRGE+%$ 13D
718 131lR= DEC. SL=UMPAGE+S11A
vZE 132D= PUT. SL=UMPAGE+$12D

ae we

PRPAGE=$1423 STARTING PAGE OF PRINT
3 UTILITIES.

PR.ON =PRPRGE+$14

PR.OFF=FRPAGE+$1A

PR.CHR=FRPAGE+%$43

FRIMNT : =PRPAGE+$E4

PUSHSL=FRPAGE+$112
POP.SL=PRPACE+$1ZB

we wn

HEX.PG=%$1588 ADDRESS OF PAGE IN WHICH
HEXDUMP CODE STARTS.

SA=HEX. FG+352
EA=SATZ
SAHERE=HEX.PG+E1E67
NEXTSL=HEX.PG+$283
GOTOSA=HEX. PG+$2AA

ws we

HMOVERS=%17ED START OF MOUE OBJECT CODE.
DEST =MOVERS+2

MOU. EA=MOVERS+$26

DAHERE={1OVERS+%132

EDFRGE=%1E£00 STARTING PAGE OF EDITOR.
EDKEYS=EDPRGE+S3CH

12za
1835
1649
18587

1
lava
16558
1958
1160
1113
1128
1133

WE we b WS ue we

P S s

-

we

URRIABLES

EHEFFEED B S PR RRSFRBREREA S REFS DA RS LR REES

T

ws wa

340 BEYOND GAMES

1145
1153
1183
11783
1183
1139
1269
1218
1229
1229
1249
1258
1269

1279
1288
12938
1283

318

1228
1338
1348
12598
1363
13793
1388
1359
1489
1438
1429
1433
1443
1450
1463
1473
1489
1498
1598
1518
15268
1528
1542
1557

1568
1573
1583
1559
1608
1518
1623
1633
1648
1653
1659
1679
1683
1683
176a
i71a

1E3i=

1£C8

1EC3

1ECI

1ECZ

1EC3

1EC4

1ECS

1ECB

a5

a3

18

TF

51

ws wr e

EDMOBE=EDPAGE+FL

ws s

*=EDKEYS

= ws @s M5 wa W Wb s M us us e us

-

SHKY .BYTE

T3 ows Wb ows ws v

MODEKY .BYTE
H
3

NEXATKY .BYTE
]
3
3
H

PREVKY .BYTE
H
H
H

PRTKEY .BYTE
H
H

RUBKEY .BYTE

QUITKY .BYTE

we Me ws [T WE wa we we we we

$06

%83

rye

$18

vy

B=0VERSTRIKE MODE.
1=INSERT.

EDIT FUNCTION KEYS

THE EDITOR RECOGMNIZES THE
FOLLOWING KEYS AS FUNCTIOMN KEYG.
ASSIGH A FUNCTION TO A KEY

BY STORING THE DESIRED KEY

CODE FROM YOUR SYSTEM' S
KEYHANDLER INTO OME OF THE
FOLLOWING DATA BYTES:

THIS KEY FLUSHES THE
BUFFER OF ANY TEXT. %66 IS
CONTROL-F. THUS, COMTROL-F
TO FLUSH THE BUFFER.

THIS KEY CAUSES THE EDIT

TO CHAMGE MODES. FROM INSERT
TO QUERSTRIKE, AND VICE VERSA.
$23 IS CONTROL-C. THUS,
COMTROL~C TO Changs modes.

THIS KEY SELECTS THE MEXT
CHRRACTER 1IN THE BUFFER.

SUBSTITUTE RIGHT-ARROW IF
YOUR KEYBOARD HAS IT.

SELECT PREVIOUS CHARACTER
IN THE BUFFER. SUBSTITUTE
LEFT-ARROW IF YOUR KEYBOARD
HAS IT.

THIS KEY PRINTS THE BUFFER.
CONTRGL-P
to Print tha buffaer.

THIS KEY RUBS QUT THE

CURRENT CHARACTER., IF YOU
HAUE DELETE KEY BUT NOT RUBOUT,
USE YOUR SYSTEW S CODE FOR

THE DELETE KEY.

THO QUIT KEYS IM A ROW
CAUSE THE EDITOR TO RETURM
TO ITS CALLER.

341

1728
1728
1748
17549
1768
1778
ives
1798
1808
1818
pR=Vids)
1830
1848
1850
1868
1878
1880
1836
1989
191a
1929
1928
1949
1959
1968
e7g
1586
1988
25388
2018
20829
2839
2748
28598
20638
2079
2088
2839
2193
2118
2128
2138
2149
2158
2169
2179
2188
218@
2299
2210
2224
2228
2249
2258
2269
2279
2289
2258

1EC?

1EC8
1ECB
1ECE
1EDO

1EDL

1ED4
1ED7

1EDS

1EDA
1EDE
1EDC

1EDD
LEED

1EEL
1EE4

[515]

TEMPCH

WE WP @ we ME We WS W6 Me we wa M s WE S0 ws WE ua e WP PT] wE WE g we we W

ws we

.BYTE @

OTHER UARIABLES:

THIS BYTE USED BY EDITIT.

FAEBEFERBBEFREEBEBLRNREBBEREREBEH S B RB RSP R E LR R RS

TEXT EDITOR: UPDATE SUBRCUTINE

Z9EG12 EDITIT JSR GETKEY

CIOCG1E
nelr

48
ZREQL1Z

CDCB1E
Dzo4

68

68
58
68

H
SDC71E NOTEND

68
Z2BE7TIE
ADCYIE

342 BEYOND GAMES

wn we

EMDEDT

s

ws

CHMP QUITKY
BNE DO.KEY

PHA

JSR GETKEY

CMP QUITKY
BNE MNOTEND

PLA

PLA
PLA
RTS

STA TEMPCH
PLA

JSR DO.KEY
LDA TEMPCH

ERBFEBABBEDRBIBERERBEPRRBRERBERBBPERRRLRRPRLLESR

GET A KEYSTROKE FROM USER
USER.

IS IT THE "QUIT" KEY?

IF NOT, DO WHAT THE KEY
REQUIRES.

IF IT IS THE "QUIT" KEY, SAVE
IT AND GET A NEW KEY FROM
USER.

IS THIS A "QUIT" KEY, TOO7

IF NOT, THEM THIS IS NOT THE
END OF THE EDIT SESSION.

END THE EDT SESSION?

POP FIRST "QUIT" KEY FROM
STACK.

POP RETURN ADDRESS TO
EDITOR’S TOP LEVEL.
RETURN TO EDRITOR'S CALLER.

SAVE TH KEY THAT FOLLOWED

THE "QuIT" KEY.

POP FIRST "OUIT" KEY FROM STACK.
DO WHAT IT REGUIRES.

RECOUER THE KEY THAT FOLLGHED
THE "QUIT" KEY.

"BO.KEY" DOES WHAT THE KEY
IN THE RCCUMULATOR REQUIRES:

a1

)N
AR
&
53]

) N o=
R s R e

W W

n U &

NN NN R NN
SIS

Bofdou) 03)W

X

i

AR T I R B

N
=N
N,

[

2469
2473
Z480
2458
2528
25104
2528
25329
2543
2555
2554

)
1

L B e xS VY 0 L S S v B B XA

PSS 0 B I O o T s o B U s B e A B\

7
=

R Rt I B RN TN s s B B e s B B B s B A Ay € I
w A

Xt g B 33 BN ORR ST I S

[EENEENEEN|
[V I)

PR NNNNNNNNRNRMNONNDNNNPNNNDNDNMN NN,
~N O s) N e

N

(R B s Vs A)

VQIQ oS3 E L

NN NN

1EET
1EER
1EEC
LEEF
1EF 1
LEF3
1EFB

1EFY
1EFA

LEFC

1FEs
1FB3
1FBS
IFEs

1IF3

1Fac
e
1FLl

iF1z
1Fi%
L7
LF 1A

1IF1E
1F1le

b b
NN
(VIR

1F24
1F27

1Fz29
LFzcC

1FZD

H
DO.KEY CHMP

) BHE
CEDLLE DEC
1aas BFL
AZCL LoA
20Tl 1E 5TR
63 DO.END RTS

H
H
CDCZLE IFMNEXT CMP
0Ra4 BMNE
’
2RATS1IF JSR
*
68 RTS

H
H
12 IFFREV CHMP

CDC3

jatalal BNE
2687 LF JSR
915 RTS

H
H
CDCS1E IF.RUB CMP
a4

2] BHE
ZOnDLF JSR
=12 RTS

H
1E IF.PRT CHF

CDC4
Dang BHE
ZBTELF JER
64 RTS
5
H
H
CDCRIE IFFLSH CiHMP
Lan4 BNE
H
ZBB41F JSR
€2 RTS
oK.

MUST BE
CLURRENT

WE ws T we @ ws we W ae

AEALLIE CHARKY LDX
FEa4 EEQ
H
2034LF JSR
[=24] RTS

’
282013 STRIKE JSR

MODEKY
IFMEXT
EDMOTE
DO.EMD
#1

EDMODE

NEXTKY .

IFFREV

NEXTCH

PREUKY
IF.RUB
FREVSL

RUBKEY
IF.PRT
DELETE

PRTKEY
IFFLSH
PRTBUF

FLSHKY
CHARKY

FLUSH

IS IT THE "CHANGE MODE" KEY?7
IF MOT, PERFORM NEXT TEST.
IF 50, CHAMGE THE EDITOR' S
MODE.

RETURN TO CALLER.

IS IT THE "MEXT® KEY?
IF NOT, PERFORM NEXT TEST.

IF SO, ADYANCE TO NEXT
CHARACTER. . .
.. .AMD RETURN.

IS IT THE °"FREVIBUS® KEY?

IF NOT, PERFORM MEXT TEST.
IF S0, BACK UP TO PREVIOUS
CHARACTER AMD RETURN.

IS IT THE *"RUBOUT™ KEY?
IF NOT, FERFORM NEXT TEST.
IF S0, DELETE CURRENT
CHARACTER AND RETURM.

IS IT THE "PRINT® KEY?

IF NOT, PERFORM HEXT TEST.
IF SO, PRINT THE BUFFER...
«« . AND RETURN.

IS IT THE "FLUSH" KEY?

IF MOT, IT MUST BE A CHARACTER
KEY.

IF S0, FLUSH THE BUFFER.

ANMD RETURN.

IT'S NOT AN EDITOR FUMNCTION KEY, SO IT
A CHARACTER KEY. DEFENDING ON THE
MODE, WE'LL EITHER INSERT OR QUERSTRIKE

EDMOTE
STRIKE

INSERT

FUT.SL

THE CURRENT CHARACTER.

ARE WE IN OVERSTRIKE MODE?

IF SO, OUVERSTRIKE THE CURRENT
CHARACTER.

IF MOT, INSERT THE CHRRACTER.
RETURM.

REFLACE CURRENT CHARARCTER

343

2888 WITH NEW CHARACTER.
2889 1fF30 2e8317 JER NEXTSL SELECT NEXT CHARACTER.
2900 1F33 69 RTS RETURN.

2918

2928

293208

2848

2958

2968 1F34 43
2378

7 ue wn @t us ws

o
0]

ERT PHA SAVE THE CHARACTER TO BE
INSERTED, WHILE WE MAKE ROOM

we s

2989 FOR IT IN THE BUFFER...
2998 1F35 201215 JSR PUSHSL SAVE THE CURRENT RIODRESS.
3988 1F38 ADS315 LDA SA+1 SAVE THE BUFFER’S AUDRESS.
3319 1¥3B 48 PHA

3p28 1F3C ANSZ1S LDA SA

3339 1F3F 48 PHA

3848 H

3853 H

3668 1F48 ADSSLS LDA EA+L SAVE BUFFER’S END ADDRESS.
3878 1F43 48 PHA

3888 1F44 ADS415 LDA EA

3088 1F47 48 PHA

3128 H

3118 H

3128 1F48 286716 JSR SAHERE SET SA=SELECT, 50 CURRENT
3128 H LOCATION MILL BE START OF
2148 H THE BLOCK WE’ LL MOVE.

315@ H

3168 H

317a H

3162 1F4B 288317 JSR NEXTSL ADUANCE TO NEXT CHARACTER
I1ig8a@ H POSITION IN THE BUFFER.
3283 lF4E 3311 BMI ENDINS IF WE’RE AT THE EMD OF THE
3218 H BUFFER, WE’LL OUERSTRIKE
3228 H INSTEAD OF INSERTING.

3239 3

3243 i

3259 1F52 28E218 JSR DAHERE SET DEST=5ELECT.

3268 H DESTINATION OF BLOCK MOVE
3z27a H WILL BE ONE BYTE ABOVE
3288 3 BLOCK’ & INITIAL LOCATION.
3238 H

3288 H

3318 iF53 AB5415 LDA EA DECREMENT ENI ADDRESS
2329 1F565 1Bg4 BMNE #+6

3338 1F58 CEGSS1S BEC EA+l

3340 1F5B CES41S DEC EA

3359 3

33692 H

3374 H

3388 1FSE 280617 OPENUP JSR MOV.ER OPENM UP ONE EBYTE OF SFACE
3293 H AT CURRENT CHARACTER’ S
3428 H LOCATION, BY MOUING TO DEST
3418 H THE BLOCK SPECIFIED BY SA, EA.
3429 H

3439 H

3448 1FEL 68 ENDINS PLA RESTORE EA S0 IT POINTS
3458 1FozZ BD5415 STA ER TO END OF BUrfER.

344 BEYOND GAMES

3468
347Q
34808
3498
3588
3518
3528
3538
3548
3558
3569
3578
3580
3598
3598
3518
3528
3630
36408
3658
2668
3679
3588
26358
3728
3713
3728
373a
3748
3758
3769
3774
3788
37809
3508
3218
3828
3820
3848
3858
3268
3878
3883
3823
528
3318
3828
3933
3848
3358
3360
357a
3388
3383
4889
45318
48203
4338

1FE5
1FE6

1FEg
1FeA
1FED
1FBE

1IF71

1F74

1F75
1F78
1F79
1F7C
IF7E

iFsg

1Faz2

1FB4
1FE6

1F87
1FG8
1FSB
1Fae
1FS8

1Fg2
1F35
1F88
1FSA
1Fgc

1FSF
1FAl

68
805515

B8
805215
68
805315

282815

88

20ZD1F
=3%)
283412
COFF
Foga4

288317

€8

AIFF
&8

33
ADS315
cngelz
S8gC
nglg

ADSZ1G
cDgsiz
Faiv

82926

s
281A13 SL

A388
58

we we

wr we

-y

we we

s wn

NEXTCH

- “ us

»e ws ws

AN.ETX

s e wer

*

PREVSL

- we we

0K

PLA
STA

PLA
sTa
PLA
STA

JSR

PLA

JSR
RTS
JSR
cMP
BEG

JSR

RTS

LDA
RTS

SEC
LoAa
CMP
BCC
ENE

LoA
cMP
BEQ
BCS
JSR

LnAa
RTS

EA+L

SA+1

POP. SL.

STRIKE
GET.SL

FETX
AM.ETX

NEXTSL

#SBFF

SA+1
SELECT+1
SL.OK
NOT.OK

SA

SELECT
NO.DBEC
NOT.OK

BEC.SL

8

RESTORE SA S0 IT POINTS TO
START OF BUFFER.

RESTORE SELECT SO IT POIMTS
TO CURRENT CHARACTER POSITION.

RESTORE NEW CHARACTER TO
RCCUMULRATOR. WE' VE CREATED

A CME-BYTE SPACE FOR IT, SO

WE MNEED OMLY OVERSTRIKE IT

AND RETURN.

GET CURRENT CHARACTER.

IS IT END OF TEXT CHARACTER?
IF SO, RETURN TO CRLLER,
BEARING A NEGATIVE RETURN CODE.

IF NOT, SELECT NEXT BYTE IN
BUFFER.

RETURN PLUS IF WE INCREMENTED
SELECT; MINUS IF SELECT
ALREADY EQUALLED EA.

SINCE WE'RE ON AN ETX, MWE
WILL RETURN MINUS, WITHOUT
INCREMENTING SELECT.

PREPARE TO COMFPARE.

IS SELECT IN A HIGHER PAGE

THAN START OF BUFFER?

IF S0, SELECT MAY BE DECREMENTED
IF SELECT IS IM A LOMWER

PAGE THAN SA, IT'S NOT OK.

SELECT IS IMN SAME PAGE AS SA.
IS SELECT>SA?

IF SELECT=SA, DON' T DECREMENT
SELECT.

IF SELECT<KSA, DON' T DECREMENT
SELECT.

SELECT>5A, S0 WE MAY
DECREMENT SELECT AMD IT

WILL REMAIN IMN THE BUFFER.
SET A POSITIVE RETURN CODE...
.. .AND RETURN.

345

4945

4858
P53
4579
4089
4998
4125
4119
4120
4136
4142
4159
4180
4178
41808
4199
4208
4218
4223
4239
4243
4250
4260
4279
4zen
4738
4389
4310
4320
4328
4343
4350
4360
4370
4322
4299
4490
441m
4428
4438
4448
4458
4450
4475
4480
4450
4503
4519
452@
453m
454m
4550
4560
457G
4589
4890
4509
4519

1FAz
1Fas
LFAB
1FAE
1FRE
1FE3

1FBL
1FE3

1FB4
1FB7
1FES
LFBC

1FBF

1FCl

1FC4
1FCs
IFC3
1FCB
1FCE
1FDe
1FDZ
LFDS
LFD3

1FDA

1FOD
1FED
1FE3
1FE4
LFET

IFEB

LFEB

1FEE

ADS21S
B8oB512
ADS215
8DB512
A358
(=15

ASFF
€8

Z2ORBLT
ASFF

292013
288317

19F8

26R317

6a
ZBAZLT
281414
289412
C3FF
Feag
204914
288317
18F1

4C1lA14

291215
ADG315
438
ADS215
45

22E218

283317

2865716

346 BEYOND GAMES

s e O e e

> we

s

s ws we

s wo

7 ws um

[we ws #s ws us

@ WSy we -

we

NUT.OK LDA

STA
LA
STA
LDA
RTS

LDA
RTS

ISR
LDA
JSR
JER

BPL

ISR

RTS
JSR
ISR
JSR
chMP
BEG
JER
JSR
BFL

IMP

JSR
LDA
PHA
LA
FHA

JSR

JER

JSR

SA
SELECT
SA+1

SELECT+1

+8

#SFF

GOTOSA
FETX

FUT.SL
MNEXTSL

FLOOP

GOTOSA

GOTOSA
PR.ON
GET.SL
#ETK
ENDPRT
PR.CHR
MEXTSL
PRLOOF

PR.OFF

PUSHSL
SA+1

NERTSL

SAHEFE

SINCE SELECT<SA, IT IS NOT
EVEN IM THE EDIT BUFFER. SO
MAKE SELECT LEGAL, BY SETTING
IT EQUAL TO 3SA.

SET A FOSITIVE RETURN CODE...
« . «AND RETURN.

SELECT=8A, S0 CHANGE
NOTHING. RETURMN WITH
NEGATIVE RTURN CODE.

SET SELECT=5A.

PUT AN ETX CHARACTER

IMTO THE BUFFER.

ADYAMNCE TO NEXT POSITION INM
BUFFER.

IF WE HAVEN' T REACHED END
OF BUFFER, PUT AN ETX INTO
THIS POSITION, TOO.

HAVIMG FILLED BUFFER WITH

ETC CHARACTERS, RESET SELECT
TO BEGIMNING OF BUFFER.

RETURN.

SET SELECT TO START OF BUFFER

SELECT PRINTER FOR OUTPUT.
GET CURRENT CHARARCTER.

IS IT ETX?

IF S0, WE'RE DONE.

IF NOT, PRINT IT.

SELECT NEXT CHARACTER

IF WE HAVEM' T RERCHED THE

EMD OF THE BUFFER, HANDLE

THE CURRENT CHARACTER AS BEFORE.
HAVING REACHED END OF MESSAGE
OR EMD OF BUFFER, RETURN TO
CALLER OF EDITIT, DESELECTING

THE PRINTER AS WE DO SO.

SAVE CURREMT ADDRESS.
SAVE BUFFER’ S START ADORESS.

SET DEST=SELECT, BECAUSE

WE’ LL MOUE A BLOCK OF TEXT

DOWM TO HERE, TO CLOSE UP

THE BUFFER AT THE CURRENT
CHRRACTER.

ADUANCE BY OME BYTE THROUGH
BUFFER, IF POSSIBLE.

SET SA=SELECT, BECAUSE THIS

IS THE START OF THE BLOCK WE’LL

4529
4538
4649
4553
453
4B7E
4582
4528
4788
4713
4729
4739
4743
4758

IFFL

1FF4
IFFS
IFF8
LFFg

LFFC
1FFF

220617

B8
805215
=]
8U5315
ZA2B15
[534]

s we wa ws

ws ws as

JSR

PLA
STA
PLA
sTA
JSR
RTS

MOV.ER

SA+1
POP.SL

MOVE DOWN.

NOTE: THE ENDING ADDRESS OF
THE BLOCK IS THE END ADDRESS
OF THE TEXT BUFFER.

MOVE BLOCK SPECIFIED BY

sfA, EA TO DEST.

> RESTORE INITIAL SA (WHICH

IS THE START ADDRESS OF THE
TEXT BUFFER, NOT OF THE BLOCK
WE JUST MOVED.)

RESTORE CURRENT ADDRESS.
RETURN TO CALLER.

347

Appendix C12:

Extending the Visible Monitor

349

AA W0 WO W W W

0 0 00 N W o)

£
N
ArmROON VERO

s b
3

578 1808=

Wwe WO s W ws W WE wr we us

We ws ar e W we Wh wE wE WE us

Ws wa we ws wk M e wE WU s us we We

ws s - s we s we ws WS we

we we

RFFENDIX ClZ: ASSEMBLER LISTING OF
VISIBELE MONITOR EXTENSIONS

SEE CHAPTER 12 OF BEYOND GAMES: SYSTEM

SOFTWARE FOR YOUR 6582 PERSOMAL. COMFUTER

L T T e T e R S e S e Pl s S L Ll i

EXTERMAL ADDRESSES

FHEBFRBRPPILIEIBFIALEREBIRRBLEERBEEP LR L LEISHS

PRPAGE=5%1480 STARTING PAGE OF PRINT
UTILITIES.

FRINTR=PRPAGE

USER =PRPAGE+Z

HEX.FG=%1509 ADBRESS OF PAGE IN WHICH

HEXDUMP CODE STARTS.

TUBUMP=HEK . PG+357
PRIUMP=HEK. PG+SAE

DSPAGE=%1909 STARTING PAGE OF DISASSEMBLER

351

583 '1393= TU.DIS=DSPAGE+T

599 1926 PR.DIS=DSPAGE+E2E

| Sjata] 3

€18 17B8= MOQUERS=$17B8 START OF MOVE OBJECT TOIDE.
623 17B4= MOVER =PMOUERS+4

€28 H

548 H

8BS0 1LERG= EDPRGE=81E6Y ADDRESS OF PAGE IN WHICH
B53 : EDITOR CODE BEGINS.

673 lE@Z= EDITOR=EDPAGE+2Z

68a 3

659 3

Kg5l%] 3

718 H

728 3

738 H

748 3

758 H

768 1889 *=51382

7a H

7sa H

728 R S S S S g
o83 3

e18 H EXTENSIONS TO THE VISIBLE MONITOR

828 H

833 3 SFREBLEFBBRERFPESBERBSPESEFEBERBRERELBIHEEFE
840 H

85H H

BEg 3

879 18BB CI-@ EXTEND CMP # P IS IT THE " P° KEY?

S28 1882 0829 BHNE IF.U IF NOT, PERFORM NEXT TEST.
696 19E4 ADZB14 LR PRINTR IF S0, TOGGLE THE PRINTER
SB@ 1@B7 4SFF EOR #%FF FLAG. . &

S189 1889 8DB014 STA PRINTR

SZ2% 18BC 63 RTS AMND RETURN TO CALLER.

8939 H

948 18BD CI95hL IF.U cHP # U IS IT THE U KEY?

853 1@BF DUBS BNE IF.H IF NOT, PERFORM NEXT TEST.
9@ 1BCL ADWZ14 LA USER IF S0, TOGGLE THE USER-
S73 18C4 43FF EGR #&FF PROVIDED OUTFUT FLAG...
983 18Ct 8hEzZl4 STA USER

ggg 1aC3 &8 RTS AND RETURNM.

leza H

1913 18CR C348 IF.H CMP % H 1S IT THE ‘H KEY?

1928 18CC Daal BME IF.M IF NOT, PERFORM NEXT TEST.
133 1ACE RDZB14 LDA FRINTR IS THE PRINTER SELECTED?
18473 1©D1 D@4 BHE MNEAT. 1 IF S0, PRINT A HEXDUMP.
1859 1@D32 Z8571S8 JSR TUDUMP IF HOT, DUMP TO SCREEN...
ipca 1806 B2 RTS AND RETURM.

1973 19D7 ZPRELS NEXT.1 JSR FRDBUMP PRINT A HEXDUMP...

1999 190A 69 RTS ..« AND RETURN.

198@ H ’

1183 160B CS84D IF.1 CHMP #° M IS IT THE "M KEY?

1119 1800 Lua4 BNE IF.DIS IF NOT, PRFORM NEXT TEST.
1127 190F Z6B417 JSR MOVER IF S0, LET USER SPECIFY AMND
11358 1BEZ B3 RTS AND MOUE A BLOCK OF MEMORY.
1148 3

1158 1BE3 C83F IF.DIS CMP # 7 1S IT THE * 7" KEY?

352 BEYOND GAMES

1188
1178
1188
1186
1268
1219
1229
1238
1243
1259
1268
1273
1288
1293
1389
1318
1328

1BES
18E7
16EA
18EC
18EF
16Fg
1aF3

16F4
18F6
16F8
18FB

1aFC

DeBl
AlBa14
D4
268919
68

282619 NEXT.2

=17}

€S54
Daga4
20GZ1E
&8

=1

irF

m
we me @ 5C we

.T

BNE
LoaAa
ENE
ISR
RTS
JGR
RTS
cmP
BNE

ISR
RTS

RTS

IF.T

PRINTR
NEXT.2
TV.DIS

PR.DIS

T

EXIT
EDITOR

IF NOT, PERFORM NEXT TEST.
IS THE PRINTER SELECTED?
IF S0, FPRINT A DISASSEMBLY.
IF.NOT, DISASSEMBLE TQ THE
SCREEN AND RETURN.

PRINT A DISASSEMBLY...

AND RETURN. :

IS5 IT THE ' T° KEY?

IF MNOT, RETURNM.

IF SO, CALL THE SIMPLE
TEXT EDITOR AND RETURN.

EXTEND THE WISIBLE MONITOR
EVEN FURTHER BY REPLACING
THIS "RTS" WITH A ° JvP TO
MORE TEST-AND-BRANCH CODE.

353

Appendix CI 3:

System Data Block for the Ohio
Scientific C-1P

355

188
110
128
13@
1449
158
164
i7e
189
180
208
219
220
238
248
258
zZ68
Z7e
288
298
308
318
328
3302
340
35@
360
378
388
398
4p0
418
429
4318
449
4503
469
470
480
498
5@
518
526
5308
549
550
566
578

1800

1008 6518

1882 Z@

19693 18

1884 .18

Mo Wa g M we we e

H

R

T

T

We ME wa wE M wa A wk WE WA we WE WE MO WA MR M e WE wa wd W3 wa WA e Me e

Thowr wrowr wr we

e

D) we wr owr we urowe wEowe ue

WIMHC

’
UCOLS
3

3

VROKS

2

ARPENDI® Cl3: ASSEMELER LISTING OF
SYSTEM DRTA BLOCK
FOR THE OHWIO SCIENTIFIC C-1IP

BY KEN SKIER

SCREEN PARAMETERS

%%%%%%*¥#**%#*ﬁ#%**$$%$$$$#*$*#**$$**%3$$***

*=31882

. WORD $DBES THIS IS THE ADDRESS OF THE
CHARACTER IN THE UPFER LEFT
CORNER OF THE SCREEN. THE
ADDRESS OF HOME WILL UARY AS

A FUNCTION OF YOLR VUIDEOQ MOMITOR

I SET MINE TO $D@E5. IF YOU

cAN' T SEE THE UISIBLE MONITOR

DISFLAY, ADJUST THE LOW BYTE.

BYTE 32 ADDRESS DIFFEREMCE FROM ONE
ROW TO THE NEAT.

.BYTE $18 NUMBER OF COLUMNS ON SCREEM.
COUMTIMG FROM ZERO.

JBYTE %18 MNUMEBER OF ROKS ON SCREEN,

COUNTING FROFM ZERO.

357

580 1885 I3 HIFAGE .BYTE %03 HIGHEST PAGE IN SCREEN MEMORY.

530 1086 28 BLANK .BYTE %23 0SI DISFLAY CODE FOR A BLANK.
€696 1087 19 ARROW .BYTE %18 0SI DISFLAY CODE FOR AN UP-ARROW
6518 3

628 H

630 3

6540 H

650 H

668 3

678 H

680 H

698 H

7oa § SEPEHEBEEBREBEBERLLEFIEREEBRSBEBIIRBRBRIHARS

710 H

728 H INPUT/QUTPUT VECTORS

738 H

748 H SEBHSSESEEEESBBBBEEEREBRFFERRBBRBHBEEFIIERRED

g=14) H

d=17] H

77a 3

T80 H

790 H

868 H

810 1808 EOFE ROMKEY .WORD $FEED POINTER TO ROUTINE THAT GETS
828 H AN ASCII CHARACTER FROM THE
836 H KEYBOARD. (NOTE: $FFEB IS
B840 H THE GENERAL CHARACTER-INPUT
858 3 ROUTINE FOR 0SI BRSIC-IN-ROM
868 H COMPUTERS. 3

874 3

888 H

890 190R ZDBF ROMTUT .WORD $BFZ2D POINTER TO ROUTINE TO PRINT
983 H AN ASCII CHARACTER ON THE SCREEN
916 H (NOTE: SFFEE IS THE

9z8 H CHARACTER-QUTPUT ROUTINE FOR
938 H 051 BASIC-IN-ROM COMPUTERS.)
948 3

350 H

969 188C BLFC ROMPRT .WORD $FCB1 POINTER TO ROUTINE TO SEND AN
=)} H ASCII CHARACTER TO THE PRINTER
988 H (ACTUALLY, TO THE CASSETTE .PORT.
9398 H

1893 H

1919 199E 1619 USROUT .WORD DUMMY POINTER TO USER-WRITTEM OUTPUT
1620 3 ROUTINE. (SET HERE TO DUMMY
1838 H UNTIL YOU SET IT TO POINT
1049 3 TO YOUR OWN CHARACTER-OUTPUT
1858 H ROUTINE.)
186Q 3

1879 3

1982 18190 6@ ouMMY RTS THIS IS A DUMMY SUBROUTINE.
1899 H IT DOES NOTHING BUT RETURN.
1108 H

111@ H

1120 H

1138 H

1148 H

1158 H

358 BEYOND GAMES

1168
1178
1189
1138
12893
1218
1ZZ29
123

124a
1258
1269
1278
1239
1258

1811 8

EXBERBBEBFBFBEFBBREFFAEIS LB BRI ERAB BB RS R PR D

CONVERT ASCII CHARACTER TO DISPLAY CODE

FRHRIRRBEEIEREREFEEFEP I BB PLEREBES R BB RREBIHR

XCHR RTS

SINCE 0SI DISFLAY CODES ARE

THE SAME AS THE CORRESFOMDING
ASCII CHARACTERS, NO COMUERSION
IS MNECESSARY; FIACHR 1S A DUMMY.

359

Appendix Cl4:
System Data Block for the PET 2001

361

jR%]
29
38
49
j=3a]
&8
Ta
=la]

1298
118
128
138
148
158
1€8
178
189
193
289
z218
228
238
249
258
269
278
280
299
3va
218
326
339
348
358
268
373
383
338
403
419
428
438
478
489
493
508
515
5zZ9
28
S48
£56
568
578
586
556
508

1688

1069

1882

1883

1885
1686

10a7

288

28
27
8

83
zZa

1E

WE W WE WE WS WS W WE WS WP WS VT we WE UP WE WS UE W UP WE BN we Wi wE uwe we

. oas ue ws us ws we

X

—-

- A
e Coer Cowe Ot ws D ws we we wr ur
£
(o)
Z
3]

AFPEMDIX Cl4: ASSEMBLER LISTING OF
SYSTEM DATA BLOCK
FOR THE PET 2881

SEE AFPEMDIX B2 OF BEYOMD GAMES: SYSTEM

SOFTWARE FOR YOUR 5582 PERSONAL COMPUTER

BY KEM SKIER

FHEEESSSREUBDEEBRERERPEERBREBB U B L RERRKEBERSR

SCREEM PARAMETERS

#*=31060

«WORD

BYTE

SBYTE

.BYTE

.BYTE
LBYTE

.BYTE

£$5008

$z8

39

24

%63
328

$1E

BHEBEREERIERFBEREPBERERRBF PR R AR BRBAB R IR BR%

THIS IS THE ADDRESS OF THE
CHARACTER IN THE UFPER LEFT
CORNER OF THE SCREEN.

ADDRESS DIFFERENCE FROM ONE
ROW TO THE NEXT.

NUMBER OF COLUMNS ON SCREEN,
COUNTING FROM ZERO.

MUMBER OF ROWS OM SCREEN.
COUNTING FROM ZEROC.

HIGHEST PAGE 1IN SCREEN MEMORY.
PET DISPLAY COBDE FOR A BLANK.
CIN MORMAL VIDEO MODE.)

PET DISFLAY CODE FOR UP-ARROMW.

363

618
628
638
549
658
668
€70
688
690
78a
1A
728
T30
7406
753
7EQ
778
Kg=1%]
799
B8RO
81g
828
838
840
858
860
876
889
899
Sa8
Sle
828
839
948
858
968
sva
sSes
899
16639
iB1e
1829
10329
1643
1858
1860
1870
1288
1698
1128
11183
1129
1138
1143
1158
1169
1178
1188

364 BEYOND GAMES

1888 2R18

198/ DZFF

188C lele

180E 1818

1919 68

R

R

R

e

] c
5 we we wo wp @n ws (7] R we wr ug ws we o wa

B We WP Ga we we we W wa WU wh ws We We WE WO

=}

D) WS wp us ws wr W we

O ws we ws

WE WA WE MU uE WE ws M AT e WE e We we

S T e L e S R e e S

MKEY

MTUT

MPRT

ROUT

MY

INPUT-OUTPUT VECTORS

WORD PETKEY

JWORD $FFD2

JWORD DUMMY

-WORD DUMMY

RTS

FOINTER TO ROUTIMNE THAT GETS
AN ASCII CHARACTER FROM THE
KEYBOARD. (MOTE: PETKEY
CALLS A ROM SUBROUTINE, BUT
PETKEY IS5 NOT A PET ROM
SUEBROUTINE.?

POINTER TO ROUTINE TO PRINT
AN ASCII CHARARCTER ON THE SCREEN

POINTER TO ROUTIMNE TO SEND AN
ASCII CHARACTER TO THE PRINTER
(SET TO DURMY UNTIL YOU MAKE
IT FPOINT TO THE CHARACTER-
OUTPUT ROUTINE THAT DRIVES
YOUR PRINTER.)

POINTER TO USER-WRITTEN OUTPUT
ROUTINE. (SET HERE TO DUMMY
UNTIL ¥YOU SET IT TO POINT

TO YOUR OW CHARACTER-OUTPUT
ROUTINE.)

THIS IS A DUMMY SUBROUTINE.
IT DOES MOTHING BUT RETURN.

HRERBBFERRSHPERFLHEEFLUBEBFFERA SR E R BB RBEIHE

CONVERT ASCII CHARACTER TO DISPLAY CODE

BRI FERERBERBREBRRLEFHEBBBSERBEIBEERRFRBRBES

1153
1288
1219
1z28
1238
1248
1259
1269
1z7v@
1288
1296
1368
1318
1329
1329
1348
1358
1379
1386
1358
14989
1418
1429
1438
1435
1448
1458
1468
1478
1485
14893
1528
1519
1528
15328
1543
1554
1563
15783
1588
i53

1666
1618
1629
1638
1649
1659
1528
1678
1828
pR=AS)
1753
1718

i\11

1913

1814

1816

1918

1818

181cC
181E

1821

1823
lg24

1626
1827

18zA

1820

287F

3z

C349

9311

co6g

Sesn

AZBE
8D4CES

£S29

18
9993

33
£948

ca

ws us ws el we ws we

s us we

we

we

.
s

We e we we WS s up w1

Wh we WS we ue we we W

ACHR GND #%7F

SEC

CHMFP #$44

BCC FIXENMD

CHP #%B53

BCC SUB.49

LDX #14
STR 53468

SBC #%$28

CLC
BCC FIXEND

SUB.49 SEC

SBC #9408

FIXEMD RTS

CLEAR BIT 7, TO MAKE IT

A LEGAL ASCIT CHARACTER.
PREPARE TO COMPARE.

15 IT LESS THAN %487 (IS
IT A NUMBER OR PUNCTUATION

. MARK?)

IF 50, NO CONVERSION NEEDED.
IS IT BETWEEN $49 AND $607

IF 50, SUBTRACT $48 TO
CONUVERT FROM.ASCII TO PET.

iT's >= $68, SO WE MUST

SET PET DISPLAY MODE FOR
CHARACTER SET THAT INCLUDES
LOWER CASE ALPHA CHARACTERS.
SUBTRACT $28 TO CONVERT
LOWER CASE ASCII TO PET CODE.

PREPARE TO SUBTRACT.

SUBTRACT $4@ TO CONVERT ASCII
UPPER CASE CHAR TO FET CODE.
RETURN, WITH A HOLDING

PET DISPLAY CODE FOR RSCII
ORIGINALLY IN A.

FEERRPBREIRBIBEBREBBBEBFERRBRELLEBLEIHABEBR%

GET AN ASCII CHARACTER FROM THE KEYEOARD

HHEFIBEBESRLSREBEBFEBREERRBBEBEESEHBRESHLEH S

ZBE4FF PETKEY JSR $FFE4

297F

FBra

=34

ws

we we

AND #87F

BEQ PETKEY

RTS

SCAN THE PET KEYBOARD

CLEARR BIT 7, TO BE SURE

IT'S A LEGAL ASCII CHARACTER.
ZERQ MEANS MO KEY, S0

SCAM AGARIN.

RETURM WITH ASCII CHARACTER
FROM THE KEYEOARLD.

365

Appendix CI 5:
System Data Block for the Apple I

367

HPPENDIX C15: ASSEMBLER LISTING OF
SYSTEM DATA BLOCK
FOR THE APPLE II

N
g
we

i
o
W we us W we we ue

SEE APPENDIX B3 OF BEYOND GAMES: SYSTEM
SOFTWARE FOR YOUR 6582 PERSONAL COMPUTER

BY KEM SKIER

[
-
9

wr ue we W s

o
ul
]

wr W we W

1eg
188
2849
218
229
229
243
=t}
268
278
2en
288
38g
316
328
3z3
3483
350 1888 *=5$1068
358
Iva
388
294
428

A wa we we

ARRFSFEBBEHBHRBEBBEBRBRESSHRIIBREBBERFHEEHHHS

we W we uS ws we

SCREEN PARAMETERS

FHESEEEHFRPBRSERERFEBEDFBBHLEIFIFRBEBFSEBELEHR

e MR ws WE uE we e

C) we we wa wo ws

410 1890 auB4 HOME -WORD $B8420 THIS IS THE ADDRESS OF THE
428 H CHARACTER IN THE UPPER LEFT
433 H CORNER OF THE SCREEN.

448 H (MHEN YOU ARE DISFLAYING

458 H LOW-RESOLUTION GRAFHICS AND
455 H TEXT PAGE 1.)

470 1892 B9 ROWINC .BYTE %20 ADDRESS DIFFERENCE FROM ONEC
483 H ROW TO THE NEXT.

488 1983 27 TUCOLS .BYTE 39 NUMBER OF COLUMNS ON SCREEN.
528 H COUNTING FROM ZERO.

516 1924 @7 TUROMS .BYTE 7 NUMBER OF ROMS ON SCREEN,

528 H COUNTING FROM ZERO.

538 16e5 87 HIPAGE .EYTE $@7 HIGHEST PAGE IM SCREEM MEMORY.
5449 : H (MITH LOW-RES PAGE 1! SELECTED.)
558 1828 AB BLANK .BYTE %A% APPLE II DISPLAY CODE FOR

569 H A BLANK: A DARK BOX, USED AS
578 H A SPACE WHEN APPLE II IS IN

369

j=3as]
598
€69
616 187 DE
6zZ%
£38
648
€59
659
€73
683
698
B3
Tlg
728
738
743
rg=1%]
768
778
789
799
83
813
eza
8313
848 1688 1410
859
862
e7a
889
e9g
j=15]u]
sig
92z 192A 1A18
833
949
958
982 188C 1818
S78
j=i=1%]
929
1808
121a
1829
1929
1840
1859
18E8
ig7va
1880
lesa
1188
11108
1122
1138
1148

370 BEYOND GAMES

fi

0 s we wi

M WS W W ws MU us WE UE Uk WE @E WS W WS WE Us We us we W

ROW .BYTE $DE

NORMAL DISPLAY MODE (WHITE
CHARACTERS ON A DARK
BACKGROUND.)

APPLE II DISFLAY CODE FOR

A CARAT (USED BECAUSE APFLE
II HAS NO UP-ARRCM.)

SEBBEEBHEHFEBRBBEAEBABLEFLUBLFRSRBRXBRRAREANE

INPUT/OUTPUT VECTORS

FREEBBBEFRPDBBEBBFEBBBEPRSEIBRBHB PSR BB BB F1R%

ROMKEY .WORD APLKEY

R

R

) w% wr ws we us ar o

O ws us ws

ws WS w4 W s Wa WS ws WS WE We WS wE ¥ us W WS we

MTUT JWORD APLTUT

MPRT .WORD DUMMY

POIMTER TO ROUTINE THAT GETS
AN ASCII CHARACTER FROM THE
KEYBOARD. (NGTE: APLKEY
CALLS A ROM SUBROUTIME, BUT
APLKEY IS NOT AN APPLE ROM
SUBROUTINE.

POINTER TO ROUTIME TO FRINT
AN ASCII CHARACTER ON THE SCREEN

POINTER TO ROUTIME TO SEND AN
ASCII CHARACTER TO THE PRINTER
(SET TO DUMMY UNTIL YOU MAK
IT POINT TO THE CHARACTER-
OUTPUT ROUTINE THAT DRIVES
YOUR PRINTER.)

YOU MAY WISH TO
SET ROMPRT SO IT POINTS TO
$FDED, THE APFLE II°S
GENERAL CHARACTER OUTPUT
ROUTINE. $FDED WILL PRINT TO
A PRINTER IF YOU TELL
YOUR APPLE II ROM SOFTWARE
TO SELECT YOUR PRINTER AS
AN OUTPUT DEVICE. DO THAT
IN BASIC BY TYPING “PR #MN",
WHERE N IS THE MUMBER OF THE
SLOT HOLDING THE CIRCUIT CARD
THAT DRIVES YOUR PRINTLR.

v

1o 1818 USROUT .WORD DUMMY FPOIMTER TO USER-WRITTEN OUTFUT
ROUTINE. (SET HERE TO DUMMY
UMTIL YOU SET IT TO POINT
TO YOUR OWN CHARACTER-OUTPUT

ROUTINE.)

12819 69 DurMMY RTS : THIS 1S5 A DUMMY SUEBROUTINE,

1T DOES NOTHING BUT RETURN.

BELKBFEBFEBRSSFRRFBRSERSIREBRERSFERERIBEANAH
COMVERT ASCII CHARACTER TC DISFLAY CODE

R L e L e e s e L L s

We i WS ws WE Wi we We wo We e ue WS WE W We WE WE we (- ws we we we WS we [J] we we ws

1422 1811 €883 FIACHR ORA %892 SET BIT 7, S0 CHARACTER
1448 WILL DISFLAY IMN NORMAL MODE.
1458 1813 EB RTS RETURN.

1460 H

l47g H

1483 H

1459 H

1563 H

1518 3 BEBEEDIASBREFERLBEBEATEBRIRRBRABBBRERSERBRES
1529 3

153@ H GET 8N AZCII CHRRACTER FRCM THE KEYBOARD
1548 H

l=ed H

157@ H

1529 3

1558 H)

1E20 1814 2835FD0 RPLKEY JSR SFD3% GET KEYBOARD CHARACTER WITH
1819 H EIT v SET.

3= 1817 237F AND #87F CLEAR BIT 7.

1823 H

1540 1919 69 RT3 RETURN WITH ASCII CHARACTER
PRt H FROM THE KEYBOARRD.

iRt H

1E7H H

1880 H

15968 H

1799 3

171@ H

1728 H

3N

1733

s
1748 3 FEERBEFERFERBBBRBARBERERBRBEFRREFRBRERLRBEHES
1758 4
1768 H PRINT AN ASCII CHARACTER ON THE SCREEN
17798 H
1786 HEE L e T s s st
175@ H
pR=l} H
iB1@ H
1828 H
1838 H
1548 181Aa 8928 APLTUT ORA #3588 SET BIT 7 50 CHARACTER WILL
1858 H PRINT IN NORMAL MODE.
1868 191C 28FDFB J5R $FEFD cALL APPLE II ROM ROUTIME 1O
1874 H PRINT R CHARACTER TO SCREEN.
1882 181F 60 RTS RETURMN TO CALLER.

372 BEYOND GAMES

Appendix C16:

System Data Block for the Atari 800

373

263
el

EiE

S

N2 OmNOEO s W N

o b 0) U2) B W)W NN N R NN NN
N Ul o

(RSP B (A R A M)

7
ja
A
1]
3
.;3
5]
4]
o]
@
]
a
fr_,"!
o]
el
3
]
a

W we wE ak wh e

P R I L

WE WS wa uE e wE WY we an I ME WO Me W we we e s we

ws W we wa

ws -

up e

AFFEMDIXK Cl6: ASSEMBLER LISTING OF
SYSTEM DATA BLOCK
FOR THE ATARI £83

SEE APFEMDIX B4 OF BEYOND GAMES: SYSTEM
SOFTWARE FOR YOUR 6522 PERSONAL COMPUTER

BY KEN SKIER

EXTERNAL ADDRESTES

TV.PTR=G

TUSUBS=%1129

CLR.XY=TUSUBS+$13
TUHORE=TUSUB5+%$ZB
TUTOXY=TYSUBS+%$3C
TUDCWN=TUSUBS+$7E&
TUPUSH=TUSUBS+%C4
TV . POP=TUSUES+3D3
VUCHAR=TUSUBS+%7C

HEX.PG=5%1500
SA=HEX.PG+E52
EA=5R+2

MOV, PE=%$1709
DEST=MOW. FG+3EZ
MOV, EA=[0V. PG+ED6

375

588

H
598 H
689 H
618 s BRLBBERBEERFERBELBRERSHEEPEPRIRREXBBERSHLFRS
6268 H

28 H SCREEM PARARAMETERS

549 H
655 H HHFEESBERFFPSESSFEPEBERBBSIRLRLERFBEREEREHDBA
668 H
678 H
583 H
658 3
7oA H
719 1988 *=5 1005
729 3
733 H
743 3
=ttt H
768 1988 42Z7C HOME WORD $7C4Z ADDRESS OF THE
7ra H CHARACTER IN THE UPFER LEFT
7EB H CORNER OF THE SCREEN.
783 H (FGR AN ATRRI 564 W/32K RAM,
826 H IN SCREEN MODE 8.3
218 3 YOU MUST USE SCREEN MODE @.
828 H APPENDIX B4 INCLUDES A BASIC
&34 H PROGRAM TO START THE UVISIELE
a4 H MONITOR. IT SETS HOME FOR
858 3 YOUR SYSTEM.
8e8 H NOTE: IF HOME IS LESS THAN $2829
8783 H (8182 DECIMAL), THE SCREEN
c2a H MILL INTERFERE WITH THE
852 H SOFTHARE IN THIS BOOK.
8930 H
|14 H IF YOU TRY TO RUN THIS
828 H SOFTHWARE ON AM BK SYSTEM. DON'T
938 H USE THE DISARSSEMELER OR THE
845 H SIMPLE TEXT EDITOR, BECAUSE
g59 H SCREEN OFERATIONS WILL WRITE
aca H QUER THEM, AND THEY' LL CRASH.
arg! H
SE6 1082 28 ROMINC .BYTE 48 BLORESS DIFFERENCE FROM ONE
5389 H ROW TO THE MEKT.
10z@ 1e83 27 TUCOLS .BYTE 28 MUMBER OF COLUMNS OM SCREEH,
1618 3 COUMTING FROM ZERG.
luzg 1884 17 TUROKMS .EBYTE 23 MUMBER OF ROWS ON SCREEN.
18383 H COWITING FROM ZERQ.
1842 1885 7F HIPAGE .BYTE $7F HIGHEST PAGE IN SCREEN
1958 H MEMORY. LIKE HOME, HIPRGE
pRaisic] H URRIZS ACCORDING TO THE
1378 3 &MOUNT OF RAM IN YOUR ATRRI.
1@8a H HIFAGE 1S SET FOR YOUR SYSTEM
1883 3 MHEM YOU RUN THE BASIC PROGRAM
1153 3 IN AFPEMDIX B4 TO START
1118 H THE VISIBLE MOWITOR.
1129 H
1136 1285 8B BLAMNK .BYTE B ATARI DISPLAY CODE FOR A BLANK
1148 1887 7B ARROW .BYTE $7B aTARI DISPLAY CODE FOR
1158 3 3 UR-ARROM.

376 BEYOND GAMES

11us
128
12319

AR ESRES BRSSPI ERBERSEIEASEERFRLRLEBEEBESEE5S

INPUT/0OUTPUT VECTORS

FFFEPERBESEBIFIBDBBBREIFIERPF SRS RBRFBEBIRBERS

€ W we we we ws ME We WS ue BE WS UB UR B we we we we e

1028 2818 ROMKEY .WORD ATRKEY POINTER TO ROUTIME THAT GETS

H AN ASCII CHARACTER FROM THE

H KEYBOARD.
1388 H
1497 1908 3618 ROMTUT .WORD TUTSIM POINTER TO ROUTIMNE TCQ PRINT
141@ 3 AN ASCII CHARACTER ON THE SCREEN
14z 3
1439 H
144G 188C 1818 ROMPRT .WORD DUMMY POINTER TO ROUTINMNE TO SEND AN
1457 H ASCII CHARACTER TO THE PRINTER
1458 H (SET TO DUMMY UNTIL YOU MAKE
14783 H IT POIMNT TO THE CHARACTER-
1483 H OUTFUT ROUTINE
1494 H THAT DRIVES YQUR PRINTER.
1588 H
i5i8 3
1528 H
153g 199E 1219 USROUT .WORD DUMMY POINTER TO USER-WRITTEM OUTPUT
1543 3 ROQUTINE. (SET HERE TO DUMMY
1558 H UNTIL YOU SET IT TO POINT
1568 H TO YOUR OWN CHARACTER-OUTFUT
1873 H ROUTINE.)
1582 3
1538 H
160G 1318 ©8 DUMMY RTS THIS IS A DUMMY SUBROUTINE.
161G H IT DOES NOTHING BUT RETURNM.
16528 H
1639 H
1648 H
159 ¥
iesa H
1678 H
1639 3 FHEEBSIEBREERSRESEERFEEREEEBEBERBELERETFIREES
1537 H
1793 H CONVERT ASCII CHARACTER TO DISPLAY CODE
1718 H
17298 $ FSHEFFERERBEEESERRBIEEERSRERRE RS RBBEFIERPE4HSE
1739 H

377

1749
1758

“e

’
1768 5
177 H
1788 1811 297F FIXKCHR AMD #§7F CLEAR BIT 7 SO CHARACTER 1S
1758 3 A LEGITIMATE ASCII CHARACTER.
1800 1813 38 SEC PREPARE TO COMPARE.
1818 19014 C9Z28 CHP #%28 IS CHARACTER < $2087
1828 1B1l6 So88 BCC BADCHR IF S0, IT'S MOT A VIEWABLE
1828 H ASCII CHARACTER, SO RETURN
1848 H A BLANK.
1659 3
1880 1818 CSs5a8 CHMP #%50 IS CHARACTER < $6@7
1872 1B81A 98A37 BCC SUB.Z0 IF SO, SUBTRACT $28 AMD RETURN.
1BE@ 1891C C3S7B CrP #37B CHARACTER < B7BE7
1838 1@1E 8B@7 BCC FIXEND IF S0, NO COMVERSION IS NEEDED.
1523 H
1819 16z0 ADSG616 BADCHR LDA BLANK THE CHARACTER IS NOT A
1928 H UIEWAELE ASCII CHARACTER,
1937 1823 &8 RTS SO RETURN A BLANK.
1949 1824 38 SUB.2@ SEC FREPARE TO SUBTRACT.
1358 1925 E926 SEBEC #3208 SUBTRACT $29 TO CONVERT ASCII
19568 H TO ATARI DISPLAY CODE.
187a 1927 69 FIXEND RTS RETURN WITH ATARI DISPLAY
13989 3 CODE FOR ORIGIMAL ASCII
1558 H CHARACTER.
2803 H
2B19 H
2828 H
2839 H
2843 H
2958 H
ZBED H
2874 H
2984 3 BEREBBIRBPIRANKABAIERBHEES FESFAPRESEBEERLDBES
2833 3
2108 H GET &N ASCII CHARACTER FROM THE KEYBOARD
2118 H
2128 H BEEEBRBEEBREEHERRSBEITIEFBPIRRFIBRBEHRLBERES
2138 H
21408 H
2158 H
2158 H
2178 H
2188 3
2153 H
2273 3
2219 1828 ADFCHZ ATRKEY LDR $B2FC HAS A KEY BEEM DEPRESSED?
2223 18ZB CSFF CHP #SFF SFF MEANS NO KEY.
2Z23@ 1BZD FBFg BEQ ATRKEY IF NOT, LOOK fAGRIN.
2248 H
2258 3 A KEY HAS GOME DOWN.
2268 H ACCUMULATOR HOLDS ITS
2278 H HARDMARE KEY-CODE.

2289 102F AB TAY PREFARE TO USE THAT COLDE AS
2238 AS AN INDEX.

2388
2318

378 BEYOND GAMES

2424
2433
2449
Z45%
2« 6a
2473
2489
2433
ZEea
2514

zZB69
2578
ZBEY

26849
27BA
2718
2729
2738
2744
2758
2763
2779
A4=%]
2723
2869
z2els
2828
2839
234
2859
ZBED
2873
28898
28806

1634

1628
1E3ZA
183C
162F

l@4n
1@4z
1044

1a47
184R
184D
1858
1853

1856

1858 ¢

185C

caan

DOBS
AEEA
&D3518
=

CagR

n2s3
4C2BOT

8035415
Zac4il

EE3SL8

we We ws WE WS WS WE WE W WS WP s SE ws wa &0

CHAR

-
e we W C “-r we we

-
<

.COL

-

Wi LS ue ws us W we W ws

RESET

LFTEST

s we

CHSAVE

.

LA ATRKYS,Y

RTS

LOOK UP CHARACTER FOR THAT
KEY AND SHIFT STRTE.

BETURN WITH ASCII CHARACTER
FOR THAT KEY AND SHIFT STATE.

SRR EBHREPLSERBRERFRFBBEBPERBERBEBRBIERPRERIHS

PRINT AN ASCII CHARACTER ON THE SCREEN

CR=%@D
LF=46A

.BYTE @

.BYTE B8

cMP

BNE
LA
s7A
RTS

cmpP
BHE
Jme

STa
JSR

Loy
LTX
JER

LDA
JSR
INC

#CR

LFTEST
#8
TU.COL

#LF
CHSAVE
SCROLL

TUCHAR
TUPUSH

TUROWS
TY.COL
TUTOXY

TUCHAR
VUCHRR
T™.COb

IF

FBHHEEERFEBFBEIUBILBFRIF S BRI RBE BB AR REPIBRBHED

ASCII CARRIAGE RETURM.
ASCII LINEFEED CHARACTER.

THIS BYTE HOLDS CHARACTER
TO BE DISPLAYED. (ALSO,
CHARARCTER MOST RECENTLY
DISPLAYED, USING TUTSIM.)
THIS BYTE HOLDS COLUMM IN
WHICH CHRARACTER WILL NEXT
APPEAR. WE MAY THINK OF IT
AS THE POSITIOM OF AN
ELECTRONIC "PRINT-HEAD".

IS CHARACTER AN ASCII
CARRIAGE RETURN?

IF NOT, PERFORM NEXT TEST.
RESET TV COLUMN TO

LEFT MARGIN AND

RETURNM.

IS IT A LINEFEED CHARACTER?
NOT, HANDLE IT AS A CHARACTER
SCROLL TEXT UP FOR A LINMNEFEED.

SINCE IT'S NOT CR OR LF,
LET'S SAVE IT.
SAVE ZERO PAGE BYTES WE’ LL USE.

SET TW.PTR TO CURRENT
FOSITION OF "PRINT-HERD".

GET CHARACTER TO BE DISPLAYED.
SHOMW IT.
ADVANCE "PRINT-HEAD® TO NEXT

379

2388
29143
29Z8
283g
2943
2353
2969
2978
2588
2888
3868
Big
3828
3638
3040
3858
Elala)
3873
3853
3858
3188
3ilg
3128
3133
3149
3154
31643
3178
3188
3159
329
3z19
3229
3238
3z4m
3z5a
3268
3274
3z84d
32849
3389
3319
3329
3328
3349
3368

58

S7E
3368
3223
3422
3419
3428
3433
3442
3454
3464
347@

.. we

Lna TY.CoL
CHF TUCOLS

1865 DBYE BHE TUTEND
1857 Z293R18 JSR RESET
1BER Z8BZ8E JER SCROL
1950 280311l TUTEND JSR TV.PCP

3
1878 69 RTS

H

H

H

H

H

’

H

H

z

L

H

3

3

H

3
gES0 #=5HTEG

wa we us we we

BE2Z 28411 SCROLL JSR TUPUSH

e W Wl WS wE us WE W

BEE3 ADB31T LDA DEST+L

CERE 43 PHA
PEST ADBZLY LA DEST
ZESA 48 PHA

BESE £D5515 LDA EA+L
BEEE 48 PHA

ZESF AlE415 LDA EA
BEDZ <8 FHA

BE3S3 ADS315 LDA &A+l
BESE 48 FHa
BEST ADSZLS LOA 56
BESH 48 FHA

ws we

BGESE ZBZB1l
GESE ASED
BERB 8DBZ17

JER TVHOHME
LDA TU.FTR
STa DEST

380 BEYOND GAMES

SCREEN POSITION.

HAZ *PRINT-HERDR" REARCHED
RIGHT EDGE OF SCREEM7?

IF NOT, PREFARE TO RETURHM.
IF S0, RESET "PRINT-HEAD" TO
LEFT MARGIN AND SCROLL TEXT.
RESTORE ZERQ PAGE BYTES

WE USED, AND RETURN.

BHEEFEEEDEAIEFIRBER IR EFERSAS LA RSB RHBR BB RBI RS

SCRCGLL TEXT UF OM SCREEM

FBBEBELSLSFREBREBREEELRFSEERBERESPLABHRBBISHS

SAVE ZERD PAGE BYTES WE'LL
UsE.

SCROLLIMG IS SIMPLY MOVING
THE CONTENTS OF SCREEN MEMORY
UF BY OME RO, BEFCRE WD

MOUE ANYTHING, HOWEVER. LET'S
SAVE SA, EA, AND DEST--

THE MOVE PARAMETERS.

MO SA, EA, AND DEST ARE SAVED.
SET TU.PTR TO HOME FOSITION.
SET DEST=HOME., SINCE WE'LL
MOVE THE CONTENTS OF SCREEN

3460
3496
3508
3518
3529
3538
3548
3558
3568
3570
3580
3594
3688
3618
3628
3638
3648
3658
3660
3678
3688
36398
3788
3719a
3728
3738
3748
3I7rs8
3rey
37V
3788
3788
3888
3816
3IBZB
3838
3849
3858
3860
3879
3880
3894
3968
39109
3328
393a
3940
3958
3960
3579
3980
393@
%% %]
4018
4823
48332
4844
4858

BEA3
BEAS

BEAS
PEAB
GERD
BEBG -
BGEBZ

BEBS
BEES
BEEBB
BEBE
BECH
BEC3
BECS

BECS
BECB
BECE
%] a1%)
BED3
BEDE
BEDB
BEDB
BEDC
BEDF
BEED
BEE3

‘BEE4

BEET
BEESD
BEEB
BEEC
GEEF
%] 2 o
BEF3

BEFG

Asal
8DB317

287611
ASBA
805215
ASB1
805315

AEB318
ACB418
283C11
ASYG

805415
ASB1

805515

20617
ACB418
AZBY
2a3ClL
AEB318
31%153 8
281311
68
805215
68
805315
€8
805415

8DB217
=3=)

8DB317
280311

[=1%)

s us

WE w WwE WE us ME we R 'Y

WY e ar WA ar s ws

w.

LDA
s7a

JSR
LoA
sTA
LA
sTA

LIOX
[)¢
JSR
LDA
STA
LoA
sTR

JSR
LY
LDX
JSR
LDX
Loy

ISR

PLA
5TA
PLA
STA

sTA
PLA
STR
PLA
STA
PLA
STA
JER

RTS

TU.PTR+1 MEMORY TOWARDS THE HOME
DEST+1 ADDRESS.
TUDOWN SET SA=ADDRESS OF SCREEMN
TU.PTR POSITION AT COLUMN @, ROW 1.
SA THAT MARKS THE START OF
TU.PTR+1 OF THE BLOCK TO BE MOVED.
SA+L
TUCOLS SET EA=ADDRESS OF POSITION
TUROWS IN BOTTOM RIGHT CORMER OF
TUTOXY THE SCREEN.
TU.PTR
EA
TU.PTR+1 EA WILL MARK THE END OF
EA+1 THE BLOCK TO BE MOVED.
NOW SA, EAR, AND DEST SPECIFY
THE BLOCK TO BE MOVED, AND
ITS DESTINATION.
MOU.EA MOVE THE BLOCK.
TURQWS SET TU.FPTR TO BOTTOM LEFT
¥4 CORNER OF SCREEN.
TUTOXY
TUCOLS CLEAR THIS ROW.
#1
CLR.XY
RESTORE THE MOVE
SA PARAMETERS: SA, EA, AND DEST.
sa+l
EA
EA+l
DEST
DEST+1
IV.POP RESTORE ZERO PAGE BYTES MWE
USED.
RETURN.

FEBRBEPEIFEFFUBERREEFREIRLUBEERBH B LSRRI RABEEE

KEYBOARD DEFINITION TABLE

BEHESEFFFFFRAREBPRFRSEBREBREERBERBRRBBBLRBRRS

381

4BEG

- ws

4379
428 ;
4790 H
419@ ;
4119 @Fgg *=50F 38
4128 ;
4138 ;
4149 ;
4158 H
4168 3
4178 ggzT= APOSTR=%27 ASCII APOSTROPHE.
4188 BESE= CARAT=85E ASCII CARAT.
4159 BEiB= ESC=31B ASCII ESCAFE CHARACTER.
4288 BEzZ0= SPACE=$2D ASCII SPACE.
4z1@ PPag= TAB=3 ASCII TAB CHARACTER.
4278 935B= BACKSL=$5B ASCIT BACKSLASH CHARACTER.
4220 pEOS= BACKSP=8 ASCII BACKSPARCE CHARACTER.
4249 DE5A= LERAKT=%5A ASCII LEFT ERACKET.
4258 gg50= RERAKT=$50 ASCII RIGHT BRACKET.
4259 paTF= DELETE=$7F ASCII DELETE CHARACTER.
4279 3
4268 3
4258 ;
4300 PFEZ BC ATRKYS .BYTE ‘14’ ,8,8,” k+%o’ ,0," pu’ ,CR,” i-='
BFOL BA
@ BFgz 3B
BFEs BR
pra4 89
B

TN N
0w Wy
=8
AR]

S

il

3]

3

i

s

BFlEB 78 .BYTE ‘v’ ,8,’¢",8,8,’ bxz4’ ,8,’ 36" ,ESC,” 521"

gl
g
4318 pFlz 53
4317 ©F13 0B

4317 9F14 6@

4319 OF15 B2

4310 BFLS 78

4319 DFL7 7A

4317 @F1e 34

4318 arls Bo

4318 oF1A 33

4319 BF1B 36

4316 @F1C 1B

4319 BF1D 3

4310 @FIE 32

43108 @F1F 31

4328 oFz@ 2C " UBYTE °, .n’,0,'w” ,8,’r ,08, ey’ ,TAB,’ tug’
4320 @F2L 26

382 BEYOND GAMES

433G
4333
4338
43354
4338
4328
4334

4380
4338
4489
4459
4459
4439
449G
4458
4408
4480
4418
4413
4419
4418
4419
4410
4412
4410
4520
4428
4428
4428
44z@
4428

)
2

MNNNEN

m N

e
2
6]
ar
F

W]

WDWwmNOT s W

ISESEY]

A Bras

gF3l
BFz2
ur33
GF34
@aras
arze
UF37
er3p

A @F39

BF2A
aF3E
BF3C

1

[SIRE AN}
i
[fUR)
LA =

BF 48
BF41
BF 42
BF 43
o a4
gF 45
BF 46
gr47
oF 42
BF 43
ZF4A
BF 4B
@ 4L
BF4D
BFAE
BF 4F
BFEG
BFS1
BFE2
BFS3
BF 54
BrSs

2E
BE
@3
=)

a5

3C
3E
665
&8
54
2a
ea
67
73
B1

4c
4R
EG)
o
28
4B
5B
5E
4F
26
59
55
)y
43

-
4

3D
=1
[z]%]
43
25
Ba
42

“s Wh e wr W owe

.BYTE 9 ,B,’ 87 ,BACKSP,’ 8{>fhd’ ,8,8," gsa’

FOLLOWIMG 64 BYTES CONTAIN
AS5CII CODES FOR SHIFTED KEYS.

.BYTE °L3:’,8,8,” K ,BACKSL,CARAT

.BYTE "0’ ,98,"PU ,CR,” I-=

JBYTE "V ,8,7C ,8,0, BXZ4 ,8, 38 LESC. XY

383

4420
4428
4420
4420
4428
4428
44208
4421
4428
4420
4430
4438
4438
443@
4430
443\
4438
4438
444@
4448
4448
4440
4448
4448
4448
4448
4450
4450
4450
4458
4458
4458
4458
4458
4460
446@
4488
4460
4468
4458
4468
4488
4478
4488
4490
4500
4510
4528
4530
4548
454@
4548
4540
4548
4548
4540
4548
454@

384 BEYOND GAMES

BFS6
BF57
eFsg
Brsg
BFsA
OFSB
@aFsc
@FSD
@FSE
GFSF
oren
BFE1
9re2
@FE3
OFG4
AFES
BFE6
oFe7
@res
BFES
BrFeR
GFGB
BFEC
@AFsD
9FGE

BFEGF .

eF 78
BF71.

BFYZ |
@F73’-

oF74
BrFvs
BF76
BrF77.

BF7g -

BF 79
or A
ar7B
@aF7C
gF7D
BF7E
BF7F

Brag
BFB1
BFez2
org3
BFs84
arss
BF 86
ai=Yd
juigg=ts]

58
BA
34
Ba
33
36
1B
25
z2Z
21
BA
28
50
4E
va
40
3F
[5]5)
52

‘B8

45
59
a3

aa
[14]
21%]
aa

(1%}
0a
51%)
[71%]

an wa wE ae

.BYTE LBRAKT,SFACE,RBRAKT,” N ,8," M7 ,8

.BYTE 'R .8, EY' ,TAB,” TWY

JBYTE 0 ,8,°) ,APOSTR,DELETE,” @ ,2,8

.BYTE "FHD" ,8,8," 657’

THE FOLLOWING 128 BYTES
CONTAIN CHARARCTER CODES FOR
CONMTROL SHIFTED KEYS. EDITOR
FUNCTION KEYS ARE DEFINED.

.BvyTE 90,9,9,9,06,8,6,0,8,9,%18,0,9,9,8,08

4549
4541
4548
4540
4540

4848

faig=ic)
Brea
Gres
BFBC
Gren
BFeE
ar sF
BF 39
grgl
Braz
ars3

i BF94

gras
Bren
pBrs7
oroe
araeg
@Frsa
“FgB
BFsc
BFSD
grFoe
ol o

j BFRY

BFARL

graz
GFA3
&Fa4
aras
arae
ara7
BFAg
arng
BFAA
BFAB
arac
eFAb
arfe
BFAF
8FBa
BFBL
arBZ
gre3
Bro4
8FEBS
BFES
gFBY
erFEBd
8res
BFEA
arep
aFBC
BFED
8FBE
QFBF
erca
erCl
grcz

=8
B8
a8

.BYTE ©,0,3,%.6,9,%,2,8,9,5.9.5,8.8.8

.BYTE ©,2,9,8,8,8,6,8,6,2,8,8,8,8.8,8

.BYTE 8,2.6.0,9,9,9,9,5,8,8,8,8,8,9,8

.BYTE ©.9.9.9,0,8.0.9,8,8,%,9,8,8,8,2

385

Brc3
BrC4
HFCS
BFCE
1 @FCT
1 BFCe
BFCS
GFCA
aiate:)
BFCC
BFCD
@FCE
4588 OFCF
4593 Brig
4539 BFDL
4583 @rnz
4558 8FD3
4553 OrD4
4538 BF DS
4553 BFDB
4588 BF D7
4530 gFDe
4538 BFo3
4583 @FIA
4533 gFuB
4588 BFDC
4588 @rFoD
45SE @GFDE
4580 BFDF
4E30 BrED
4890 OFEL
4E09 @rEz
4608 BFE3
4523 BFE4
4538 OrES
4508 BFES
4589 GFET
4088 OFES
4688 BFEI
4680 BFEA
4509 BFEB
4B BFEC
4593 BFED
4808 OFEE
AGE3 GFEF
4619 pFF @
4G1lE GFFL
4610 @FFZ
4518 GFF3
4818 @FF4
4518 BFFS
4B1@ BFFB
45180 GFFT
4518 OFFS
4619 BFF39
4B10 BFFA
45818 BFFE
4618 WFFC

386 BEYOND GAMES

a9
88
a3
jals]

pala]

.BYTE 9,9,8,0,9,%,8,8,8,0,3,9,8,5.9,8

.BYTE 9,9,9,9,9,9,8.9,9,6,2,2.5,2,2,8

.BY7E£ ©,9,9,9,8,8,2,0,6,9,9,8,9,0,8,8

4E1@ ZFFD
4518 OFFE
4618 OFFF

[y W]
L]

387

Appendix DI:

Screen Utilities

APFENDIX D1:

SEE CHAPTER 5 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6582 PERSONAL COMPUTER.

DUMPING $1i08-$11FF

1178
1118
1128
1139
1149
1169
1159
1178
1183
1199
11R8
1189
1ica
1108
11Ea
L1Fo

SCREEN UTILITIES

8 1 2 3 4 5 6 7 8 8 A B CDE F

28
D3
88
b=l
=1%)

EB
ng
Bl

S1
BE
63
8a
43
83

C4
11
19
gA
83

‘85

a1
Fo
732}

15
11
35
43
63
@9

11
=14}
FB
AD
RE

18
85
jai=]
B8
63
Z28
28
56
29
ea

11
i1

4a
33
1B
Fo
5o

Bl
4R
68
AR
=32
B3
za

rajei}
2a

16
RD
EF
B3
18
a9
S
19
EB
@1
28
z29
A5

ag
ua

AC
a6
(=14]

19

j=is]
s
8z
i8
a1
28
B6
ZF
81

[]%]
@a

48
58
us
uls)

13

Az
[3i3]
Ac
is
j=14)
85
©g
28
29
@A
33

8e
a9

29
zA

38
24
65
az
28
38
11
7C
38
28

41c]
7]

13
11
[34]
EC
16
23
EG
9B

1@
11
Bz
48
88
)5}
jrai%)

2a

389

Appendix D2:

Visible Monitor (Top Level and
Display Subroutines)

FPFEMDIN D2t THE UISIBLE MOMITOR (TOP LEVEL AND DISPLAY SUBROUTIMES)

SEE CHAPTER 6 OF BEEYOMD GAMES: SYSTEM SOFTWARE FOR YOUR 6582 PERSONAL COMPUTE

» 1 2 3 45 €€ 7 8 9% A B CDEF

1263 P8 BC B3 B2 31 65 17 88 DS 29 12 12 28 E3 12 18
121a um FE 20 C4 11 29 25 12 20 34 12 28 5C 12 29 AF
1223 1z 7R D3 11 E9 AZ @2 A 92 2B 3C 1l AZ 19 AB 43
1229 2 12 11 B@ AZ 9D AB B2 Z8 3C 11 AB BB 8C 51 1Z
1243 B3 52 12 28 7C 1l EE Si 12 AC 51 12 CO 8A DB Fa
1z Ep OR 41 20 2@ 5% 2@ Z@ 59 20 20 56 A2 82 A2 63
12¢ 2@ 3C 11 AD B85 12 20 A3 11 AD 65 12 28 A3 11 Z0
1 7F 11 23 94 12 48 28 A3 11 20 7F 11 68 28 7C 11
1 26 7F Ll @2 0B BD @1 12 22 A3 1L 28 7F 11 E8 E@
1z @4 DB F2Z 6@ AS ©92 48 AE B3 AD B5 12 BS 92 AD 86
1 7 B5 73 A8 OB Bl 82 A2 68 S5 62 86 83 98 68 AZ
1 0P RS B4 25 2C 11 AC 8812 33 CB 87 98 85 AL 60
1 - o7 12 BS CD 12 A8 AD 87 19 91 62 B 23 b5 28
iz GE 11 14 G2 29 P2 00 00 00 U0 B8 98 82 oD 209

390 BEYOND GAMES

Appendix D3:

Visible Monitor (Update Subroutine)

APPENDIN D3: THE VISIBLE MONITOR (UPDATE SUBROUTINE)

SEE CHAFTER & OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6592 PERSONAL COMPUTER.

4 1 2z 3 495 6 7 8383 A B CDEF

12ED 6C B3 19 20 ER 12 CY 3E DY 19 EE @9 12 AD 99 12
1270 C3 @7 D8 BS AS BB 8D BY 12 68 C9 3C DY 8B CE 88
1294 1Z 18 €5 A3 85 8D BB 12 60 C3 28 D@ B9 EE 85 12
1318 049 93 EE 96 12 68 €29 8D DY 6C AD 85 12 D9 83 CE
1226 B6 12 CE 65 12 689 RE 08 12 EQ @92 DA 1B AB RS 09
1336 43 AS @1 AD B85 12 85 99 AD 86 12 25 81 896 A8 63
1348 Sl 87 865 Bl 68 B5 89 68 CI 47 I8 23 AC B3 12 AE
B8Z 1Z AD B4 12 48 AD @1 12 28 29 6C 13 B8 8D 61
12 BE 22 12 8C B3 12 €3 8D 684 12 €@ B6C 85 12 48
a ZB D5 13 30 4B AB 68 98 AE B2 12 DB 14 AZ 83 18
5]

2z OE OS5 12 2E 6 12 CA 1@ F6 S2 8D @5 12 8D B85 12
359 8 E9 91 D9 18 23 BF 48 20 94 1Z @R BA BA AR 29
209 F@ 80 AC 13 B8 8D AC 12 28 2D 13 €@ &8 CA CA CA
3EG fg @3 18 1E 91 12 68 19 F9 1D 0L 1Z 9D 81 12 68

4] €3 T3 7F U8 94 26 09 11 68 C9 51 DB 84 €3 B8 28

La 60 Z@ B2 19 BB 38 ES 30 90 9F C3 0/ 99 GE ES 897
jal CS 1@ BG 85 38 C3 @A BB B3 AS FF 66 A2 78 52 93
4] 02 o BY 3 00 B0 0B 20 BO 68 88 BY Y4 89 B V9

391

Appendix D4:

Print Utilities

APPENDIX D4: PRINT UTILITIES

SEE CHAPTER 7 OF BEYOMD GAMES: SYSTEM SOFTWARE FOR YOUR 6582 PERSONAL COMPUTE

DUMPING $1400-$154F
B 1 2 3 45 6 7 8 9 A B CDEF

1408 FF FF 0B 23 ©9 9g BC 15 AS FF €0 81 14 60 A3 29
14198 8D Bl 14 68 A9 FF SD 26 14 63 A9 92 80 20 14 5@
1420 A9 FF S0 B2 14 68 AS 08 8D @2 14 69 28 88 14 Z@
1430 14 14 20 20 14 S0 28 BE 14 28 1A 14 28 26 14 68
1449 CY 0O FQ 24 8D B3 14 AD 91 14 FP G6 AD 83 14 26
14508 69 14 AD 0@ 14 FB @6 AD 83 14 28 6C 14 AD 82 14
1460 FO 95 AD B3 l4 20 6F 14 628 6C BA 18 6C 6C 18 6C
1478@ UF 12 A9 B0 208 40 14 AS ©A 28 48 14 69 AS 28 29
1488 40 14 68 45 4R 4A 4A 4A 20 BE6 11 20 40 14 68 208
1486 BS 11 20 48 14 68 A9 Z0O 8E B4 14 48 AE B4 14 FO
14RQ @A CE B4 14 28 4@ 14 68 18 9P FO 58 68 BE @4 14
1489 AE B4 14 F@ ©9 CE B4 14 20 72 14 18 S0 FZ 60 8E
14Cg PS 14 BS Ol 48 BS 0B 48 AE B5 14 AL B8 CS FF FO
14134 BC FS PO D@ B2 F5 @1 28 48 14 18 97 EB 68 S5 68
14E6 68 S5 91 €@ 68 AA 68 AS 26 12 15 BE 85 1Z 8C ©6
14F @ i7 70 ©D 13 28 BD 13 28 94 12 C3 FF F@ 95 28 48
15098 14 18 9@ F@ AE 85 12 AC 96 12 2@ 2B 15 S8 438 87
1518 43 50 62 8D B5 14 68 80 B7 14 AD 86 12 48 AD 85
1528 12 48 AD @7 14 48 AD U6 14 40 68 63 80 95 14 68
1539 B0 97 14 68 80 @5 12 68 8D B6 1Z AD @7 14 48 AD
1548 U 14 48 50 62 DO B0 00 DU ©0 99 0O 00 00 0O 88

392 BEYOND GAMES

Appendix D5:

Two Hexdump Tools

APPENDIX DS:

SEE CHAPTER 8 OF BEYOND .GAMES:

DUMPING $1558-%17AF

1558
1568
157a
1588
1599
15A8
1588
15Ca
1508
15E8
15F8
1688
1619
1628
1638
1649
1658
1663
1678
1689
1689
16R8
16B9
16C8
1508
16E8
15782
1793
1718

THO HEXDUMP TOOLS

SYSTEM SOFTWARE FOR YOUR €582 PERSONAL COMPUTER

8 1 23 45 858 7 8 9 A B CDEF

28

B4

58
12

i5
23

aF
Fa
28
zZ8
ba

88
29
a9A
a5
14
a5
14
=17]

15
7z

52
28
85
2@
83
2@
42
14
45
14
20
53
14
44
28

15
AL
12
72
14
cg
iv

393

1728
1739
1748
1758
1768
1778
1750
1798
L7AB

20
4z
FF
Fo
uD
15
jila
25
AD

28
29
28

a3
7D
j=12]
ch
15

394 BEYOND GAMES

28
43
7z
12

14
38
54
8D

29
pdvi]
AD
Al
14

@6
Ba@
1z

z@
44
o5
s
27
17
1z
a6
AD

33
29
iz

an
24
CD
28
53

38
29

96
56
a5
899
A9
a1z

29
29
ab

15
1z
%))
ou
12

za
45
56
[218]
Dna
29
Da
69
=15]

41

1S
56
F3
aF
BF
A3
oa

28
al3]

15
29
c9
38
FF
eg

Appendix Dé6:

Table-Driven Disassembler (Top
Level and Utility Subroutines)

APPENMDIX DS:

SEE CHAPTER 9 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR B582 PERSONAL COMPUTER

TABLE-DRIVEN DISASSEMBLER

DUMPING $1998-%1A3F

1999
1813
1524
1928
1949
1953
1969
1879
1329
1399
1979
1983
18CH
1909
19E%
19Fa
1R72A
1A1@
1Az3
1826

%]

ANE
[JVAN]

1

]3]
138

@1

49
=]
=3

29

53
19
z8
1B
12
A9
S8
2D

I
Al

28

(TOP LEVEL AND UTILITY SUBROUTINES)

Z2 3 4 5 6 7 8 3 A B CI1 E F

[3]5]
A9
18

53
15
45
T2
9z

28
1D

28
28
28
a7
33
15

1f

A
FF
ol
29
41
25
4D
14
19
23
43
AR
25
94
bl
49
19
AD
29
13

48
8D
F8
23
3
14
4z
29
28
EE
14
28
19
1z
B2
14
(=48
98
¢t}
28

iR
o4
68

83
14

-
=

7D

574
AE
B3
&C
48
A9
69
86
18
14
72

a3
ig
34
28
z9
A9
19
ES
23
14

ed]
ED
=)
BD
zZ9
13
48
28
22
ED
15
28

78
28
28

45
@D
FF
1A
19
ic
gz
1B
13
sA
68

29
18
an
@

13
70
14

on
53
28
94
29
1B
]
£8
=l
=K
48
48
19
a6
19
2]

an
19
F
za
FF

395

Appendix D7:

Table-Driven Disassembler
(Addressing Mode Subroutines)

AFFEMOIX D72 TRAELE-DRIVEN DISASSEMBLER (ADDRESSING MODE SUBROUTINES)

SEE CHAPTER S OF BEYOND GAMES: SYSTEM SOF TWARE FOR YOUR £5@2 PERSONAL COMPUTE

DUMPING $1R45-$1B4F
B 1 2 3 4 58 B 7 8 8 A B CDEF

1A44 26 CF 13 AZ @2 AS U4 68 20 49 1A 20 EB 18 AZ B2
1ASS AS ©5 65 22 48 1A 28 F6 19 A2 B2 AS 86 63 AS 41
1AE8 28 40 14 AZ BB A9 Ul 60 AZ 89 AS BB 68 AS 23 20
1RA73 4@ 14 A3 24 20 40 14 29 C8 18 AZ @1 A3 B4 60 20
1REQ El 19 20 46 1A 28 E5 19 A9 ©6 AZ B2 66 28 £1 19
1R/38 20 EB 1A 20 ES 19 A2 81 A3 98 60 20 E1 18 20 IB
1ARG 1A 29 E5 18 268 F5 18 AZ 61 A9 93 €8 28 B0 13 20
1RE@ 1z 15 28 9S4 12 48 20 6D 13 68 C9 89 1@ @3 CE 86
1RCH 17 98 0S5 18 60 €5 12 S@ 93 EE 86 12 8D BS 12 28
1A03 2B AL 15 28 ZB 15 AZ Bl A9 94 69 AS BY 20 83 14
1RED Z8 C8 19 A2 Bl AS B4 62 22 DE 1A 20 EB 19 AZ 81
1AF8 AS 95 68 28 DB 1A 2B F6 19 AZ Bl AS 66 6Y 68 68
1E9G 63 €3 20 £3 17 39 2D 20 94 12 C9 FF FQ 06 20 48
1B19 i4 18 S3 FE 2@ 72 14 2@ 83 17 68 &3 1A 5E 1A 6D
1EZ23 1A UB 1A EB 1A F3 1A 40 1A 48 1A 53 1A 68 1A AC
1830 1A B0 1A 9B 1A 7F 1A FE 1A 9% 98- 02 290 90 B3 29
1B43 oF B0 80 20 00 06 U0 U3 00 00 98 B0 90 68 0O 80

396 BEYOND GAMES

Appendix D8:

Table-Driven Disassembler (Tables)

AFPPENDIX DS8:

TABLE-DRIVEN DISASSEMBLER

SEE CHAPTER 9 OF BEYOMD GAMES:

DUMPING $1ES9-%1DFF

1BEG
1868
1B73
1828
1B38
1BR9
1BB@
iBce
1BD3
1BE®
1BF@
1Cog
1C1a
1C28
1C38
1C4g
1Cqa
1C63
1C73
ices
1C8a
1CR8
1CES
1CCo
jAmalz]
1CEB
1CFa
1088
in01g

a

7F
4z
50
44
44
4E
53
5@
54
48
54
2z
1F
58
19
7F
25

SYSTEM SOFTHARE FOR YOUR 5582 PERSONAL COMPUTER

(TABLES)Y

1 23 456 7v 89 A B C1DEF

4Z
43
4C
43
45
58
4C
43
49
53
53
[=13]
58
ar
a7
43
49

3%

ag

44
S1
42
4C
58
4A
53
41
53
54
41
=]
BA
a7
a7
49
43
B4
84
=1
a1
5B
5B
27
a7
as
85
96
eE

43
42
56
58
44
40
52
sa
4z
58
54

Ba

79
9
€4
&4
7C
7C
94
g4
SE
5E
48
49
4C
4C
26
PE

4E
54
4z
4D
59
4R
4F
50
53
54
53
78
zB
75
58
8D
a1
73
8E
46
Ag
a1
34
52
2E
4F
eB
1z
1z

44
4z
56
58
45
53
58
52
45
59
54
A
5A
77
a7
49
49
D4
g4
B1
91
58
5B
37
37
85
85
B4
18

41
40
83
43

4F

4F
4F
43
54
59
ZA
81
79
a1
&4
e1

7C
a1
A3
A3
aa
sE
43
B1
&7
31
B2
Gl

53
49
43
5a
52

52
4c
53
41
41
a1
BL

a1
B1
a1
31
a1
AL
Bl
31
a1
a1
a1
@l
a1
7]
@9

4C 42
42 4E
4C 43
53 43
43 4E
44 41
41 58
52 4F
45 44
58 54
54 45
@L A
71 BA
16 &7
%l B7
55 49
a1 49
55 @4
71 B4

Bi 91
61 58
61 BB
2D 37
g1 37
3R 85
g1 €5
@8 BC
83 16

43
45
43
5@
43
4C
48
52
53
41
58
2A
jala]
73
73
B4
54
7c
7C
a4

SE
5E
49
49
4C
4C
a1
16

43
42
4C
53
43
44
41
52
45
59
FF
81
a1
Bl

a1
a1
a1
AC
Bl
aL

397

1Dz2@ BCc 15 va
1038 . 14 18 929
1043 12 i5 @69
058" 14 18 99
1069 12 16 ©8
1D78. .14.18 ©8
inpeg . 88 16 8o
1099 14 18 @68
' 1DAR@ B4 16 @4
1DB9 14 18 29
10Cn B4 16 89
1DD3 14 18 ©9
1DE3 B4 16 DD
1DF@ 14 19 @9

398 BEYOND GAMES

%)%]

|73%]
314}

88
BB
89
517}
it
[58%]
28
735}
eg

%3]

29
Ba-

a14}
28
(515}
as
a3
a5

26
%]%]
858
a9

as

86
83

o8

A1)
an

aR
B8
a8
25

1z

1z
12
12
1z
12
1z

14
12
iz
12
12

04
19
BC
18
@4

29
18
24

a4
10

16

%]

- 99

@a
0a
va
2] 2]
|52]
]z}
ea
@a
28
28
707}

Appendix D9:

Move Utilities

APFENDIHN

SEE CHAPTER 1% OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR EB5Z2 PERSOMAL COMPUTER

Do:

DUMPING $17BO-$18FF

17B8
1ree
17083
17TED
17783
1889
1812
1829
1839
1849
1858
1869
1873
1589
1830
18R
1889
18CGH
18D3
12E9
lerg

MOVE UTILITIES

» 1 2 3 4 5 6 7 8 39 A B CDEF

ng

T 849

28
£9
B2
ag
B3
Ag
18
@1
F5
£3
al
a2
j515]
EC

B85
an
26
1z
58

66

04
4F
2@
BO
ag
o3
88
B
93

B3
38
23
8z
A4
18
AD
45
4E
B85
[515)

29
56
B3
az
83
43
a9
fAE
cA
i3
a1
=33}
a5
28
18
AD
E3
54
44
12
B3

jae]
AD

88

-
o

23
jsiz}

52
17
28
za
gD
[als)

44
5@
Bz
a0

28
54
55
en
B3
RD
c8
Fa
25
17
B4
g5
B3
Bl
17
85
Z3
45
5z
17
raja]

E4
4F
15
ED
48
52
cB
ZE

Fa
723
a1
17
%]
BL
4a]
[2)a]
53
45
AD
jal]

14
4F

53
83
15
B4
Bl
Bl
48
2A
8A
85
81
)4}
AD
z29
54
53
@6
B3

TF
4C
AD
15
19
CD
L8
oy
aa

L.

is
18
83
gz
81
53
B3
49
53
1z
29

2D

——

aa

i5
Bl
28
17
AS
Bz
22
17
52
B2
BL
aL

85
28
41
51
B3

2ag

Ba

85
85
Ad
23
FF
AD
14
43
FF
60
]

29
FF
15
23
15
9
28
Fg

28

399

Appendix D10:

Simple Text Editor

APPENDIX D1@: A SIMPLE TEXT EDITOR

SEE CHAPTER 11 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6582 PERSONAL COMPL
BY KEN SKIER

DUMPING S1lEGB-$IFFF
8 1 2 3 495 6 7 8 9ABCODEF

1EB@ FF 81 2B BF lE Z@0 37 1E 28 C8 1§ 18 18 9@ F6 20
1E18 88 14 20 E4 14 7F 6D OR 8a 53 46 54 28 55 S8 29
1EZ08 45 44 49 54 2B 4Z 55 46 46 45 52 2E @D DA 2A FF
1E38 Z8 E9 15 28 AG 17 68 28 C4 11 20 2B 11 AE 83 18
1E49 AB ©3-28 13 11 28 2B 11 28 76 11 28 C4 11 20 SE
1E58 1E 20 D3 11 20 76 11 28 83 1E 280 D3 11 &8 28 12
1E68 15 AD 83 19 4A AR CA CA 28 1A 13 CA 18 FA AD 83
1E79 18 80 88 lE 28 5S4 12 268 SB 11 20 7F 11 28 @D i3
1E88 CE 68 1t 18 EF 268 ZB 15 68 AD B3 10 4A E9 B2 20
1E9@ Bl 1T AD @1 1E CS ©1 D2 85 A9 49 18 98 B2 A9 4F
1ER8 20 9B 11 A9 B2 2B 81 11 AD 87 10 20 9B 11 A9 62
1EBG 20 81 11 AD BG 12 28 A3 11 AD 85 12 28 A3 11 58
1ECB 96 893 3E 3C 18 7F Gl B8 28 £0 12 CO C6 1E DB 17
1EDG 48 28 EB 12 CD C6 lE D@ 94 68 68 68 63 8D C7 1E
lEE@ 68 28 EY 1E AD C7 1E CD C1l 1E DY 8B CE 91 1E 18
1EF@ B85 AS 81 8D @1 lE 68 CD C2 1E D@ 84 20 7S 1F 60
1F@8 CD C3 1E DB 84 20 87 1F 68 CD C5 1E D9 94 20 DO
1Fi9 1IF 68 CO C4 1E 08 B4 28 C5 1F 6@ CD C8 1E DB B4
1F2s ZB B4 IF 686 AE 61 1E FO B4 20 34 1F 60 28 20 13
1F39 ZA 83 17 £8 48 28 12 15 AD 53 15 48 AD 52 15 48
1F48 AD &5 15 48 AD 54 1S 48 20 67 16 28 83 17 30 11
1F5a Z8 EZ 18 AD 54 15 DB B84 CE 55 15 CE 54 15 28 D6
1IF68 i7 68 B0 54 15 68 8D 55 15 638 BO 52 15 68 8D 53
1Fra 15 20 2B 15 6B 28 ZD 1F 68 28 S4 12 C9 FF Fg 94
1Feg Z8 83 17 68 AS FF .60 38 AD 53 15 CD 86 12 S8 8C
1F9g DB 19 AD 52 15 CD 85 12 F@ 17 BO B6 20 1A 13 AS
1FAG 994 68 AD 52 15 BD 85 1Z AD 53 15 8D 96 12 RS 99
1FBg 68 A3 FF 68 20 A3 17 AS FF 26 2D 13 28 83 17 10
1FCa FE 26 AB 17 68 20 AB 17 28 14 14 20 S84 12 C9 FF
1FoB FB 98 Z0 49 14 20 83 17 18 Fl1 4C 1A 14 28 1Z 15
1IFEB AD 53 15 48 AD 52 15 48 28 £2 18 20 83 17 28 67
1FFQ 16 28 D6 17 58 8D 52 15 68 8D 53 15 28 ZB 15 68

400 BEYOND GAMES

Appendix DI 1:

Extending the Visible Monitor

APFEMDIX D11: EXTENDING THE VISIBLE MONITOR

SEE CHAPTER 12 OF BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 8502 PERSONAL COMPUTER.

DUMPING 518B@-$18FF

1888
18CH
1809
12E8
l1erg

8 1 2 3 4 588 7 8 8 A B CDDEF

C9 59 DB 83 AD B2 14 49 FF 8D 89 14 62 CI 55 0@
89 AD B2 14 49 FF 8D 62 14 60 CS 48 D@ BD AD 09
14 DY @4 28 57 15 56 28 AE 15 65 C3 40 D2 B4 28
B4 17 60 C3 3F N9 @D AD 88 14 DB ©4 20 B3 18 646
2@ 25 18 63 C9 54 1V 94 ZW B2 1E 62 &0 00 @o vl

401

Appendix El:

Screen Utilities

APPENDIX EL SCREEN UTILITIES

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 4352 TO 4687
SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

19e@ DATA 4352, 32, 196, 17, 32, 43, 17, 174, 3, 4866
1881 DATA 4369, 16, 172, 4, 16, 32, 19, 17, 32, 4668
1@z DATA 4368, 211, 17, 96, 142, 42, 17, 152, 178, 5215
1083 DATA 4376, 173, 6, 16, 172, 42, 17, 145, 8, 4847
1984 DATA 4384, 136, 16, 251, 32, 118, 17, 262, 16, 5172
1985 DATR 4392, 239, 86, 25, 162, 8, 168, @, 24, 5088
19096 DATR 440, 144, 18, 173, 4, 16, 74, 168, 173, 6162
1897 DATA 4488, 3, 16, 74, 179, 56, Z36, 3, 16, 4982
1988 DATA 4416, 144, 3, 174, 3, 16, 56, 294, 4, 5620
1889 DATA 4424, 18, 144, 3, 172, 4, 16, 173, 8, 4952
1818 DATA 4432, 16, 133, @, 173, 1, 16, 133, 1, 4985
1911 DATA 4448, 8, 216, 138, 24, 101, 9, 144, 3, 50874
1812 DATA 4448, 234, 1, 24, 192, @4, 248, 11, 24, 51708
1813 DATA 4456, 199, 2, 16, 144, 2, 239, 1, 136, 5696
1814 DATA 4464, 2v8, 245, 133, B8, 48, 96, 173, 2, 6361
1815 DATA 4472, 16, 24, 144, 5, 32, 155, 17, 169, 5834
1816 DATA 4489, i, 8, 216, 24, 191, B, 144, 2, 4876

1817 DATA 4488, 236, i, 133, B, 56, 173, 5, 16, 5182
1918 DATA 4496, 197, 1, 176, 5, 173, 1, 16, 133, 5198
1919 DATA 4Suv4, 1, 49, 96, 32, 17, 16, 168, B, 4566

18206 DATA 4512, 145, @, 96, 72, 74, 74, 74, 74, 5121
1821 DATA 4528, 32, 182, 17, 32, 124, 17, 184, 32, 50608
192z DATA 4528, 182, 17, 32, 124, 17, 896, B8, 216, 5220
1923 DATA 4536, 41, 1§, 261, 1@, 48, 2, 185, 6, 4964
1824 DATA = 4544, 185, 48, 40, S6,- 194, 176, 184, 168, S379
1825 DATA 4552, 185, 1, 72, 165, @8, 72, 152, 72, 5251
1826 DATA 4568, 138, 72, 96, 104, 179, 1@4, 168, la4, 5516
1827 DATA 4568, 133, @, 184, 133, 1, 152, 72, 138, 5361
1@z8 DATA 4576, 72, 86, 6, 8, @, 8, B, 6, 4744

1929 DATA 4584, @, 8, 6, 8, B, B, 8, B, 4584
le3@ pATR 4592, @, 9, @, 8, @, 8, g, 8, 4592
1631 DATA 4694, 6, @, B8, 6, 8, 8, 6, 8, 4600
1832 END

OK

404 BEYOND GAMES

Appendix E2:

Visible Monitor (Top Level and
Display Subroutines)

APPENDIX EZ UISIBLE MONITOR (TOP LEVEL & DISPLAY SUBS)

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 4585 TO 4831
SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LORDER.

119G DATA 4688, @, 12, @, B, 48, 177, 252, 8., 51U6

1i@l DATA 4616, 216, 3z, 18, 18, 32, 227, 18, 24, 5201
1182 DATA 4524, 144, 246, 3z, 198, 17, 32, 37, 18, 5346
1183 DATA 4532, 32, 52, 18, 32, 8z, 18, 32, 175, 5853
1164 DATA 4648, 18, 32, 211, 17, 86, 162, 2, 16@, 5338
1l@s DATR 4648, 2, 32, 68, 17, 162, 25, 160, 3, 5189
1186 DATA 4556, 32, 19, 17, o6, 162, 13, 168, 2, 5157
11@7 DATA 46564, 32, 6@, 17, 168, @, 148, B1, 18, 5i72
1198 DATA 4672, 185, B2, 18, 32, 124, 17, 238, B1, 5443
i1i@3 naTA 4588, 18, 172, S§1, 18, 132, 1@, 288, 248, 5618
1119 DATA 46588, S&, 1B, 55, 32, 32, B8, 32, 32, 5075
1111 DATA 4656, 89, 3z, 32, 8@, 182, 2, 169, 3, 5256
1112 DATR 4724, 32, €8, 17, 173, S, 18, 32, 163, 5285
1113 DATA 4712, 17, 173, 5, 18, 32, 163, 17, 32, 5169
1114 DATA 4728, 127, iv, 32, l48, 18, 72, 32, 163, 5323
1115 DATA 4728, 17, 32, 127, 17, lo4, 32, 124, 17, 5198
1116 DATA 473s, 32, 127, 17, 162, @, 189, 1, 18, 5282
1117 DATA 4744, 32, 163, 17, 32, 127, l7v. 232, 224, 5558
1118 DATA 4752, 4, 288, 242, 96, 165, 2, 72, 166, 5747
1119 DAaTR 4784, 3, 173, S, 18, 133, 2, 173, 5, 5273

1123 DATA 4768, 18, 133, 3, 168, B, 177, 2, 168, 5429
1121 DATA 4776, i@4, 133, 2, 134, 3, 152, 96, 162, 5562
1177 pATA 4784, 2z, 164, 4, 32, 6@, 17, 172, B, 5231

1173 DATA 4792, 18, 56, 182, 7, l44, 5, 168, @, 5374
1124 DATA 4899, 148, @B, 18, 185, 295, 18, 168, 173, 5787
1175 DATA 4898, 7, 16, 145, @, 95, 3, 6§, 8, 5083

1126 DATA 48165, 1, 14, 17, 28, @, @, O, B, 4878
1127 DATA 4824, 8, 8, 8, @, 4, @, @, o, 4824
1128 END

406 BEYOND GAMES

Appendix E3:
Visible Monitor (Update Subroutine)

AFPEMDIX E3 YISIELE MONITOR (UFDATE SUBROUTINE)

THE FOLLOWING DATA STATEMENTS

COMTAIM DECIMAL OBJECT CODE AMD
CHECKSUMS FOR MEMORY FROM 4832 TO 5119
SUITABLE FOR LOADIMG WITH

THE BASIC OBJECT CODE LORDER.

128 DRTA 4832, 193, B8, 16, 32, 224, 18, 281, 62, 5501
1291 DATA 48548, 283, 16, 238, B8, 18, 173, B, 18, 5511
1zpz DATA 4848, 281, 7, 2898, 5, 163, @8, 141, 9, 5579
1262 DATA 4856, 18, S5, 261, 68, 243, 11, 286, B, SESE
i2@4 DATA 48854, 18, 16, 5, 163, &, 141, B, 18, &5237
1285 DATA 4872, 86, 281, 32, 283, 9, 238, 5, 18, 5679
12865 DATR 4889, 228, 3, 238, 6, 18, 96. 201, 13, 5663
1237 DATA 4882, 282, 12, 173, 5, 18, 293, 3, 288, 5721
1228 DATA 48365, B, 18, 288, 5, 18, 96, 174, O, 5413
1293 DATA 4984, 18, 224, 2, 283, 27, 168, 165, O, 5716
1219 DATA 481z, 72, 166, 1, 173, 5, 13, 133, @, 5459
1211 OATA 4829, 173, 6. 18, 133, 1, 1852, 163, @, 5563
121z DATA 4328, 145, 8, 134, 1, 194, 133, B, 95, 5541
1213 DATR 4936, 281, 71, 228, 35, 172, 3, 18, 174, 5318
1214 DATA 4844, 2, 18, 173, 4, 18, 72, 173, 1, 5485
1215 DRTA 485z, 18, 48, 32, 193, 18, 8, 141, 1, 5318
1215 DATA 4982, 18, 14z, 2, 18, 14, 2, 18, 184, 5465
1217 DATA 4953, 141, 4, 18, 96, 163, &, 18, 72, 5438
1218 DATA 4378, 32, 213, 19, 48, 75, 168, 184, 152, B7E7
1z19 DATA 4384, 174, @6, 18, 283, 28, 1B2. 3, 24, 5593
1228 DHTA 48932, 14, 5, 18, 48, &, 135, 202, 16, 5317
i2zy DATA S2688, 246, 152, 13, 5, 13, 141, 5, 18, 5523
lzzz DATA S&98, 98, 224, 1, 298, 24, 41, 15, 72, 56583
223 DATR SB16, 32, 148, 18, 18. 18, 18, 18, 41, 5255

1 DATA &%24, 2408, 141, 172, 19, 134, 13, 172, 13, £924
1225 pATA 58932, 32, 45, 19, S5, 16, z82, 282, 282, 5846
1z2z5 DATA SR4@, 1e98, 3, 24, 3@, 1, 18, 136, 16, 54Z9
1227 DRTA 5948, 249, 29, 1, 18, 157, 1, 18, 95, 5617
1228 DATA ©e58, 184, 281, 127, 288, 4, 32, 9, 17, 5748

IR
J 1B R

PR CER N

407

1228 DATA
1239 DATA
1231 DATA
1232 DARTA
1233 DATA
1234 DATA
1225 DATA
1236 END

5854,
5572,
5@50,
Sges,
56585,
5164,
5112,

408 BEYOND GAMES

86, 281, 81, zZ08, 4, 184, 1@4, 49, 5882
98, 32, 18, 16, 95, 55, 233, 48, 5685
144, 15, 281, 19, 144, 14, 233, 7, 5848
zZ8L, 18, 178, 5, 565, 281, 1B, 175, 5323
3, 169, 285, 95, 162, @, S5, B, 5577

8, 8, 68, 8, 8, B, @, @, 5184

g, 0, 8, 9, 8, @, B, @, 5112

Appendix E4:

Print Utllities

APPENDIX E4 PRINT UTILITIES

THE FOLLOWING DATA STATEMENTS

CONTAIN BECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 5128 TO 5455
SUITABLE FOR LOADIMG WITH

THE BASIC OBJECT CODE LOADER.

1338 DATA Sl28, 8, 255, 8, 8, 8, 8, 9, 8, 5375

1331 DATA 5128, 169, 255, 141, 1, 28, 96, 163, @, 55739
13@2z DATA 5136, 141, 1, 29, 96, 169, 255, 141, 8, 5958
1283 DATA 5144, 2@, 96, 159, B, 141, B, 208, S6, SE86
1384 DATA 5152, 163, 255, 141, 2, 28, 96, 169, 8, 6884
1385 DATA G&1lew, 141, 2, 2@, 95, 32, 8, 2@, 32, 5511
1385 DATA 5168, ze, 28, 32, 32, 28, 86, 32, 14, 5434
1387 DATR G178, 28, 32, 25, 28, 32, 38, 28, 56, 5460
1288 DATA 5184, 281, B, 248, 36, 141, 3, 20, 173, 5988
1399 DATA Si82, 1, 2B, 248, &, 173, 3, 20, 32, S687
1319 DATR Sz2@9, 185, 28, 173, 9, 28, 248, 6, 173, 5937
1311 DATA 5282, 3, 28, 32, 1©8, 28, 173, 2, 24, 5586
1312 DATA S52is, 248, S, 173, 3, 28, 32, 111, 28, 5B8Z1
1212 DATR 5224, 86, 1@s, 19, 15, 188, 12, 16, 188, 5688
1314 DATA 5232, 14, 18, 169, 13, 32, &4, 28, 189, 5723
1315 DATA 5248, 1@, 32, &4, 28, 96, 169, 32, 32, 5635
123168 DATA 5248, &4, 20, 98, v2, 74, 74, 74, 74, 5798
1317 DATA %255, 32, 182, 17, 32, 64, 26, 1¥4, 32, 5739
1318 pATA G264, 182, 17, 32, 64, 20, 86, 163, 32, 5876
1319 DATA S272, 142, 4, 28, 72, 174, 4, 2B, Z48, 5548
1228 DATA 5283, 19, 208, 4, 28, 32, €4, 28, 184, 5748
1321 DATA 5288, 24, 144, 249, 184, 98, 142, 4, 20, 6@62
1322 DATA S295, 174, 4, zZ4@, 2498, 89, 296, 4, 29, 5873
1323 DRATA S304, 32, 114, 28, 24, 144, 242, 96, 142, 6118
1324 paTA S3iz2, 5, 28, 181, 1, 72, 181, B, 7Z, 5844
1325 DATA 5328, 174, 5, 28, 161, B, 281, 255, 248, B376
1325 DATA 5328, 1z, 248, @9, 288, 2, 246, 1, 32, 64875
1327 DATA 5336, 64, 268, 24, 144, 235, 194, 149, B, 6976
1328 DATA 5344, 184, 143, 1, 96, 184, 178, 194, 168, 6248

409

1329 DATA
13328 BATA
1331 DATA
1332 DATA
1233 pATA
1334 DATA
13325 DATA
1336 DATA
1337 DATA
1338 DATA
1333 DATA
1348 DATH
1341 DATA
1342 END

5352,
5368,
5363,
5378,
5334,
533z,
5403,
s408,
5415,
5424,
5432,
5441,
5448,

410 BEYOND GAMES

32, 18, 21, 142, S5, 18, 143, 6, 5734
18, 32, 13, 19, 32, 13, 19, 32, 5538
148, 18, 281, 255, 248, 5, 32, 64, 6332
28, 24, 144, 248, 174, 5, 18, 172, 6173
6, 18, 32, 43, 21, 152, 72, 138, 5866
7z, 96, le4, 141, 65, 28, l@4, 141, 6476
v, 29, 173, B, 18, 72, 173, 5, 5874

18, 72, 173, 7, 28, 72, 173, 6, 5343
28, 72, 965, 184, 141, 6, 28, 184, 5979
141, 7, 2@, iB4, 141, 5, 18, 1B4, 5984
141, 6, 18, 173, 7, 28, 72, 173, 6042
6, 28, 72, 95, 9, 8, B, @, 5534

6, 9, 9, B, B, 8, B, 9, 5448

Appendix ES5:

Two Hexdump Tools

APPENDIX ES TWO HEXDUMP TOOLS

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 5456 TO 6963
SUITRBLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1408 DATA 5456, B, 4, 9, B, 255, 255, 8, 32, 6882

1481 DATA 5484, 8, 28, 173, 81, 21, 141, 88, 21, 5889
1482 DATA 5472, 173, 5, 18, 41, 248, 141, 5, 18, 6121
1423 DATA 5480, 32, 114, 29, 32, 114, 28, 32, 161, 6265
1494 DATR 5488, 21, 32, 114, 28, 32, 125, 26, 32, 5884
1485 DATA 5496, 154, 21, 32, 13, 18, 173, 5, 18, 5831
14786 DATA 5504, 41, 7, 208, 240, 32, 114, 28, 173, 6339
1487 DATA 5512, 5, 18, 41, 15, 288, 3, 32, 114, 5948
1498 DATA 5528, 29, 206, 89, 21, 288, 216, 32, 14, 6317
14@3 pATA 5528, 2@, 86, 32, 148, 18, 32, 131, 28, &825
141p DATAR. S536, 96, 173, 6, 18, 32, 131, 28, 173, 6185
1411 DATA 5544, 5, 18, 32, 131, 28, 95, 32, ZBi, 60573
1412 pATA 5552, 21, 32, 233, 21, 32, 168, 23, 3Z, 6196
1413 DATA Ste8, 28, z9, 32, 235, 22, 32, 66, Z3, 6919
1414 pATA 5568, 16, 251, 32, 114, 28, 32, 26, 28, 6873
1415 DATA ©576, 96, 32, @, 17, 32, 8, 28, 32, 5813

1416 DATA 5584, 228, 20, 127, 13, 8@, 82, 73, 78, 6285
1417 DATA 5592, 84, 73, 78, 7l, 32, 72, €3, 88, 6153
1418 DATA 56598, &8, 85, 77, 8@, 13, 18, 18, 255, 6188
1419 DATA &Se88, 95, 32, 8, 28, 32, 228, 28, 127, 6171
1426 DATA SE16, 13, 18, 83, B9, 84, 32, 83, B4, BO74
1421 DATA 5624, &5, 82, B4, 73, 78, 71, 32. 65, 6174
1422 pDATA SB32, 68, B8, 82, 69, 83, 83, 32, 65, 6182
1423 DATA 5648, 78, 68, 32, 8@, 82, 68, €3, 83, 6215
1424 DATA 5648, 32, 34, 81, 34, 46, 255, 32, 7, 6153
1425 DATA 5655, 18, 32, 183, 22, 32, 8, 28, 32, 5923
1425 DATA 55654, 228, 26, 127, 13, 19, 83, 63, 84, 6288
1427 DATA 5672, 32, 639, 78, 68, 32, 65, 68, €8, 6152
1428 DATR 5688, 82, 69, 83, 83, 32, 65, 78, 68, 6240

1429
1438
1431
1432
1433
1434
‘1435
1436
1437
1438
1439
1449
1441
1442
1443
1444
1445
1445
1447
1448
1448
1450
1451
1452
1453
1454
1455
1455
1457
1458
1459
1450
1481
1452
1463
1464
1485
1458
1457
1468
1489
1473
1471
1472
1473
1474
1475
1475

DATA
DATA
DATA
DaTA
DATA
DATA
DATA
TATA
DATA
BATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
BaTA
DATA
ATA
BATA
DATA
DATA
DATA
DATA
DaTA
DATA
END

seag,
5698,
5704,
5712,
5728,
5728,
57386,
5744,
5752,
5758,
5769,
5776,
5734,
5792,
58906,
5808,
5818,
5824,
sa3z,
5849,
5848,
5858,
5564,
s@72,
5884,
se8a,
5g3s,
5994,
s912,
5928,
5923,
5936,
5944,
5352,
5953,
5958,
5975,
5984,
5agz,
B00D,
5003,
BB1E,
s624,
932,
6040,
6048,
5056,

412 BEYOND GAMES

3z, 84, 82, B3, 83, 83, 32, 34, 6183
81, 34, 45, 255, 32, 7, 18, 55, 6225
173, &, 18, 285, 83, 21, 144, 35, 5398
Z293, 8, 173, 5, 18, 2085, 82, 21, 5432
144, 26, 173, 6, 18, 141, 85, 21, 6334
173, 5, 18, 141, 84, 21, 86, 173, 5439
6, 18, 141, 83, 21, 173, 5, 18, 5281
141, 82, 21, 88, 32, 228, 29, 127, 6491
13, 1@, 18, 18, 32, 639, 82, 82, 50608
79, 82, 33, 33, 33, 32, 69, 78, 6199
68, 32. 85, 68, 63, 82, 53, 83, 5393
83, 3z, ve, 63, 83, 83, 32, 894, 319
7z, 65, v8B, 32, 83, 84, 65, 82, 65345
84, 32, 65, 68, 68, 82, 63, 33, 6343
83, 44, 32, 87, 72, 73, 67, 72, 5338

‘32, 73, 83, 32, 255, 32, 187, 22, ©524

75, 28, 22, 168, 36, 32, 64, 28, 5263
ir3, 83, 21, 32, 131, 2@, 1v3, 82, 6539
21, 32, 131, 2B, 95, 163, 36, 32, 6359
64, zZ4, 1v3, B85, 21, 32, 131, 28, 6386
iv3, B4, 21, 32, 131, 29, 896, 32, 5437
187, 2z, 169, 45, 32, 54, 28, 32, B4Z7
28s, zz, 95, 32, 228, 240, 127, 13, 6587
18, io, &8, 8%, 77, 84, 73, v8, 6353
71, 32, 255, 32, 223, 22, 32, 114, GB61
28, 32, 228, zw, 127, 19, 18, 32, 5367
22, 22, 32, 32, 32, 32, 32, 48, Gleg
32, 32, 48, 3z, 32. 5B, 32, 32, E195
51, 32, 32, 52, 3z, 32, 53, 32, 6228
32, 54, 32, 32, 55, 32, 32, 56, 6245
32, 3z, 57, 32, 32, 65, 32, 32, 6242
56, 32, 3z, 6v, 32, 32, 68, 32, 65237
3z, 68, 32, 32, 78. 13, 1B, 18, B2izZ
255, 96, 32, 114, 28, 173, 5, 18, 6665
72, 41, 15, 141, 85, 21, 184, 41, 5481
248, 141, 5, 18, 32, 161, 21, 162, B748
3, 32, 158, 2@, 173, 86, 21, 2409, 5731
i3, 182, 3, 32, 158, 2@, 32, 13, 5483
18, 286, B6, 21, 203, 243, 32, 154, 6961
21, 32, 1zs, 28, 3z, 131, 23, 49, 5432
8, 173, 5, 18, 41, 15, 281, 9, 6478
Ze8, 7328, 96, 56, 173, 6, 18, 205, 7014
B85, 21, 144, 11, 288, 15, 56, 173, 6737
5, 18, 285, 84, 21, 175, B, 32, 6579
13, 19, 183, B, 96. 169, 255, 965, 6857
ir3, g2, 21, 141, 5, 18, 173, 83, 6744
Z1, 141, 6, 18, @5, ©, @, B, G338

Appendix E6:

Table-Driven Disassembler (Top
Level and Utility Subroutines)

AFPENDIX EB DISASSEMBLER (TOP LEVEL & UTILITY SUBS)

THE FOLLOWING DRTA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AMD
CHECKSUMS FOR MEMORY FROM 6488 TO 5719
SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1598 DATA 64@©8, S, 9, 8, 8, @, 8, 8, @, 5485

1581 DATA &4@8, 18, 32, 8, 28, 17¥3, 8, 25, 141, 6823
1582 DATA 6416, L1, 25, 169, 255, 141, 84, 21, 141, 7253
1593 DATA B424, 85, 21, 32, 114, 28, 32, 125, 25, 6878
15@4 DATA 6432, 285, 1, 25, 288, 248, 96, 32, 25, 7274
1595 DATA 6448, 28, 32, 8, 2@, 32, z2ze, 29, 127, 6827
1505 DATA 6448, 13, 18, 32, 32, 32, 32, 32, 88, 67l1
1587 DATA B456, 82, 73, 78, B84, 73, 78, 71, 32, 7827
1588 DATA 6464, 68, 73, B2, B85, 83, 83, €3, 77, VUGS
1599 DATA 6472, BB, 75, 53, 82, 46, 13, 18, 255, 7683
1518 DATA 6488, 32, 233, 21, 32, Z@, 28, 32, 228, 7038
1511 DATA 6488, 28, 127, 13, 1@, 68, 73, 83, 65, 6347
1512 DATA 6496, 83, B3, &3, 77, 65, 76, 73, 78, 7181
1513 DATA ©5%4, 71, 32, 255, 32, 223, 22, 32, 1B8, 7331
i5i4 DATR 6512, 23, 32, 114, 2@, 32, 125, 25, 15, 6833
1515 DATA 6528, 251, 32, 26, 28, 98, 32, 148, 18, 7143
1516 DATA ©528, 72, 22, 145, 25, 32, 125, 29, 184, 7684
1517 DATR 6536, 32, 175, 25, 32, 1, 26, 32, 131, 53990
1S18 DATA ©544, 23, 86, 162, 3, 142, 2, 2Zb, 179, 7167
1518 pATR 6B552, 183, 4, 28, 178, 189, 88, 27, 142, 7377
1578 DATR €568, 3, 25,.32, 64, 28, 174, 3, 25, E366
1521 DATA 6588, 232, 2686, 2, 25, 288, 238, 395, 178, 7745
1527 DATA 6576, 183, 8, 29, 178, 32, 184, 25, 856, 7931
1523 DATA B584, 189, 27, 27, 141, 4, 25, 232, 183, 7418
1524 DATA B892, 27, 27, 141, 5, 25, 188, 4, 25, 6354
1525 DATA ©689, 32, 13, 18, 32, 154, 21, 96, 32, 63999

413

1526 DATA 6608, 13, 19, 32, 148, 18, 72z, 32, 13, B955
1527 DATA 6616, 19, 32, 154, 21, 184, 32, 131, 2@, 7123
1528 DRTA 6524, 98, 169, 48, 298, 2, 169, 41, 32, 7381
1529 pATA 6632, &4, 28, 95, 163, 44, 3z, 64, 28, 7141
1538 pDATA 6648, 183, 88, 32, 64, 29, 95, 169, 44, 7322
1521 DATA 6648, 32, 64, 2B, 169, 83, 32, 64, 28, 7138
1532 pATA ©658, 86, 141, 7, 25, 142, 6, 25, 202, 7308
1533 DATA ©B664, 48, 8, 32, 26, 18, 2@2, 16, 258, 7263
1534 DATA 6672, 8, 216, 56, 173, 8, 25, 233, 4, 7335
1535 DATA. 65837, 237, 7, 25, 4@, 1va, 32, 158, 29, 7361
1536 DATA BE33, 32, 161, zi, 32, 125, 28, 32, 154, 7285
1537 pATA 6696, 21, 32, 13, 19, 286, 6, 25, 16, 7834
1838 DATA 6784, 242, 3z, zs, 18, 32, 114, 28, 896, 7285
1539 DATA B7i2, 8, 6, 8, 8, @, 8, 9, 8, 6712

1549 END

414 BEYOND GAMES

Appendix E7:

Table-Driven Disassembler

(Addressing Mode Subroutines)

APFENDIX E7 DISASSEMBLER (ADDRESSING MODE SUBROUTIMES)

THE FOLLOWING DATA STATEMEMNTS

CONTAIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 6728 TO £991
SUITABLE FOR LOADING WITH

THE BRSIC OBJECT CODE LOADER.

1600 DATA 6728, 32, 297, 25. 162, 2, 1E9, 4, 96, 7417
1691 pata e7z8, 32, €4, 26, 32, 235, 25, 162, 2, 7306
1682 DATA 6736, 163, 6, 96, 32, 64, 26, 32, 245, 7407
1693 DATA 6744, 25, 162, 2, 169, B, 86, 169, BS5, 7438
i16@4 DATA 6752, 32, 64, 28, 162, @, 169, l, 98, 7295

1635 DATA 6768, 182, ®, 169, B, 96, 169, 35, 32, 7423
1608 DATA 67658, 64, 2@, 169, 36, 32, 64, 28, 32, 7285
1567 DATA 6776, 299, 25, 162, 1, 169, 4, 96, 32, 7465

1688 DATA 6784, 225, 25, 32, B4, 26, 32, 223, 25, 7442

1685 DATR 6792, 183, &, 182, 2, 96, 32, 225, 25, 7543

161@ DATA ©&88B9. 32, 232, 25, 32, 223, 25, 182, 1, 7538
1511 DATA 6882, 169, 8, 88, 32, 225, 25, 32, 219, 7El4
1612 DATA 6816, 26, 32, 228, 25. 32, 246, 25, 162, 7533

1613 DATAR 6824, 1, 163, 8, 95, 32, 13, 19, 32, 7134
1614 DRTA 6832, 18, 21, 3Z. 148, 18, 72, 32, 13, 7185
1615 DATA €848, 19, 184, 281, 8, 16, 3, 288, B, 7335
1618 DATR 6348, 18, 8, 215, z4, 183, 5, 18, 144, 7398
1617 DATA 68Ss, 3, 238, 6, 18, 141, 5, 18, 4@, 7325
1618 DATRA 6884, 32, 181, 21, 32, 43, 21, 162, 1, 7337
1619 DRTA 6872, 189, 4, 96, 183, @, 32, 131, 28, 7493
162@ DATA 6888, 32, 288, 25, 162, 1, 169, 4, 865, 7S5E3

16Zz1 DATR 6&es2, 3z, 219, 28, 32, 235, 25, 162, 1, 7628
1622 DATA 68SE, 168, 6, 98, 32, 213, 28, 32, 248, 7722
1623 DATA €924, 25, 182, 1, 16%, 6, 96, 164, 184, 7571
1524 DATA B312, 194, 1@4, 32, 131, 23, 48, 13, 232, 7393
1625 DATA 69228, 148, 18, 201, 255, 248, 6, 32, 64, 7884

415

1628
1E27
1528
1ez3
1635
1631
1832
1533
1634

DATA
DATA
DATA
DATAH
CATA
DATAH
DATA
DATA
END

416 BEYOND GAMES

29, 24, 144, 238, 32, 114, z@, 3z, 7552
131, 23, s8, 1B4, 26, 94, 26, 183, 7545
28, 218, 26, 232, 26, 243, 26, 54, 7805
26, 72, 28, 83, 286, ig4, 28, 172, 7487
26, 141, 25, 151, 2B, 127, 268, 254, 774l
28, @, 8, @, 8, B, B9, 8, 6554

2, @, 8, 8, B, 9, B, 8, 63978
8, @, @, 9, B, 8, @, 8, £584

Appendix E8:

Table-Driven Disassembler (Tables)

APPENDIX EB

DISASSEMBLER (TAELES)

THE FOLLOWING DATA STATEMENTS
CONTAIN DECIMAL OBJECT CORE AND
CHECKSUMS FOR MEMORY FROM 6832 TO 7873

SUITAEBLE FOR LOADING WITH

THE BASIC OBJECT CODE LOALER.

1788
1781
17@2
173
1784
1785
1786
17@7
1788
1788
iria
1711
1712
1713
1714
1718
1716
1717
1718
1719
1728
1721
1722
1723
1724
1725
1726
irar
1728

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
UATA
DATA
DATA
0oATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

s8992,
7683,
7648,
7218,
7824,
7432,
@49,
7848,
7856,
THe4,
8ve,
7989,
e83,
7938,
71ig4,
Tiiz,
7128,
7128,
7135,
7144,
7152,
7163,
7168,
7178,
7184,
visz,
7203,
7298,
7216,

i2?, 8, €5, B8, B5, ©8, B7, 65, 7583

78, 868,
g6, &7,
84, 66,
88, 78,
66, 88,
€8, 67,
Y7, 5@,
£8, &3,
89, &89,
78, 88,
74, 83,
88, 7s,
79, 84,
88, 72,
g6, 82,
84, 73,
83, 89,
73, 83,
84, B9,
84, 83,
83, 84,

65,
€3,
77,
€5,
83,
78,
87,
57,
79,
73,
az,
g3,
79,
£9,
79,
sz,
57,
24,
B84,
es,
89,

34, 186, 1,

112, 186,. 18,
-31, 186, 1,

43, 186, 1,

88, 7,
118, 7,
25, 7,

832,
66,
73,
82,
67,
73,
843,
E8.
sz,
78,
78,
839,
8z,
€9,
75,
84,
83,
55,
65,
24,
€5,
1,

1,
1,

75,
3,
£S5,
75,
78,
67,
88,
83,
73,
a3,
68,
78,
65,
75,
82,
83,
€3,
83,
83,
83,
g4,

€6,
81,
78,
66,
67,
TS,
g7,
8,
78,
T4,
£5,
a3,
24,
85,
78,
83,
&3,
284,
84,
gSs,
€9,

1, 166,

i, 1,

1a8e

1, 198,
1, @6,

1, 1, 22, 7,

121,
1, 1,

1,
i,

2z,
)

121
s
1z1,

B7,
g5,
&9,
85,
g7,
88,
€a,
€3,
E7,
77,
78,
ez,
72,
84,
82,

ig,

67,
73,
66,
67,
75,
67,
89,
59,
73,
83,
63,
78,
E5,
T3,
a2z,
57,
83,
83,
eg,
28,
255,

7578
7573
7595
7822
7522
7628
TE78
e22
TET4
7783
76872
7728
7558
7713
7754
7742
7719
773
7792
7316

7877

1, 7428

, 18, 1,
1, 7441
1, 7461
7448

1, 76B&

1a,
14,
E] 1!
1z21,
i,

7388

7523

417

+fed URATA 7224, 136, 7, 1, 1, 1, 7, 121, 1, 7499

1738 pATA 7232, 127, 73, 1, 1, 1, 73, 199, 1, 76p9
1731 pATA 724@, 189, 73, ies, 1, 85, 73, 189, 1, 7732
1732 pRTA 7248, 37, 73, 1, 1, 1, 73, @@, 1, 7535
1733 paTA 7255, 43, 73, 1, 1,1, 73, 109, 1, 7oos
1734 pATA 7264, 139, 4, 1, 1, 1, 4, 124, 1, 753p

1735 pATA 7272, 115, 4, 124, 1, 85, 4, 124, 1, 7738
1736 nATA 7288, 48, 4, |, 1, 1, 4, 124, 1, 7456

1737 DATA 7288, 142, 4, 1, 1, 1, 4, 124, 172, vv3r
1738 pATA, 7298, 1, 145, 1, 1, 151, 145, 148, 1, 7833
1739 pATA 7364, 78, 1, 183, 1, 131, 145, 148, 1, vagsg
1748 pATA 7312, 13, 145, 1, 1, 151, 145, 148, 1, 7917
1741 pATA 7329, 183, 145, 183, |, 1, 145, 1, 3, 7348
1742 paTA 7328, gv, 91, S4, 1, 97, g1, 94, 1, 7834
1743 pAaTa 7336, 157, 91, 154, 1, gv, 81, 94, 1, Bezz
1744 pATA 7344, 18, 91, 1, 1, 97, g1, 84, 1, 7738
1745 DATA 7352, 52, 91, 158, 1, g7, 81, 94, 1, 7g37
1746 pATA 7368, 61, 55, 1, 1, B1, 55, 64, 1, vesg
1747 pAatA 7388, 82, 55, &7, 1, 81, 55, 64, 1, 7754
1748 pATA 7376, 28, 55, 1, 1, 1, 55, 54, 1, 7532

1749 pATA 7384, 45, 55, 1, 1, 1, 55, 64, 1, 7ve@s

1750 paTA 7392, 58, 133, 1, 1, 58, 133, 78, 1, 7853
1751 pATA 7489, 79, 133, 183, 1, 58, 133, 75, 1, 7984
1752 pATA 7483, 19, 133, 1, 1, 1, 133, 6, 1, 7773
1753 pATA 7416, 139, 133, 1, 1, 1, 133, 78, 1, 79g1
1754 pATA 7424, 18, 22z, 8, g, g, 5, 6, @, 7475

1755 DATA 7432, 13, 4, z, @, @, 12, 12, 8, 7480

1758 pATA 7448, 20, 24, 8, 8, B, 14, 14, B, 7512

1757 pata 7448, 13, 18, g, 8, 8, 2=z, 22, B, 7525

1758 DATA 7458, 12, zz, 8, @, 5, 6, 5, @, 7593

17539 DpATA 7464, 18, 4, 2, 8, 12, 12, 12, B, 7524
a,
g

176@ DATA 7472, 2@, 24, a, g, 8, 8, B, 7532

1761 DATA 7488, 13, 16, @, a, g, 14, 14, 8, 7542

1762 pAaTA 7488, 18, 2z, g, @, @, s, &8, 9, 754m

1763 DATA 7498, 18, 12, 2, @, 1z, 12, 12, v, 7564

1764 pATA 7504, 2@, 24, 8, 8, o, 8, 8, @, 7564

1765 pATA 751z, 18, 16, 8, @, g, 14, 14, @, 7574
- 1766 DATA 7s5z2e, 18, 22, @, a, o9, &, 6, 8, 7572

1767 DATA 7528, 18, 4, 2, 8, 25, 12, 12, v, 7EGz
1768 DATA 7538, 28, 24, 8, 8, 8, 8, 8 @, 7ssg
1768 DATA 7544, 18, 1g, 9, @, B, 14, 14, 28, 7534
1770 DATA 7552, @, 22, 8, @, B, 6, 6 6, 754z
1771 DATA 756w, 18, @, 18, 8, 12, 12, 12, @, 7532
1772 DATA 7568, 29, 24, 8, 8, 8, 8, 18, B, 7533
1773 DATA 7578, 18, 16, 18, @, @, 14, 8, 9, 754z
1774 DATA 7584, 4, 22, 4, 8, 6, 6, B, @, 753z
1775 DATA 7892z, 1B, 4. 18, 8, 12, 1z, 12, n, 7esg
1776 DATA 7eop, zp, 24, 9, @, 8, 8, 18, 9, 757n
1777 DATA 75e8, 2@, 18, 18, @, 14, 14, 15, @, 77eg
1778 DATA 7e16, 4, 22, 8, B, 6, 6, 6, 8, 7560
1779 DATA 7824, 18, 4,718, @, 12, 12, 12, 8, 77pg
1780 DATA 7632, 2g, 24, 2, 8, @, 8, 8, g, 7paz
1781 DATA vE4m, 18, 1g, 9, 8, 8, 14, 14, 8, 77p2
1762 DATA 7g4g, 4, 22, 8, 8, 6, B, 6, B, 7592
1783 pATA 7e56, 18, 4, 18. @, 12, 12, 12, @, 7732
1784 DATA 7664, 20, z4, 9, 8, 8, 8, 8, 8, 7724
1785 DATA 7672, 18, 16, 8, 8, @, 14, 14, @, 7734
1786 Enp

418 BEYOND GAMES

Appendix E9:

Move Ultilities

APPEMDIK ES MOVE UTILITIES

THE FOLLOWIMG DATA STATEMENTS

CONMTAIM DECIMAL. OBJECT CODE AMD
CHECKSUMS FOR MEMORY FROM 6854 TO 5339
SUITABLE FOR LOADIMG WITH

THE BASIC OBJECT CODE LOADER.

1898 pDATR ©@954, ©, 9, 8, 8, 32, 8, 28, 32, 6155

1891 DATR B@7z, 228, 24, 127, 13, 1B, 32, 32, 32, G565
1862 pATA €928, 32, 32, 77, 79, 86, 63, 32, 84, G571

1893 DATA 6928, 79, 79, 76, 45, 13, 19, 18, 255, G656
1884 DATA 6955, 32, 233, Z1, 32, 185, 24, 174, 85, 6882
1895 DATA 61p4, 21, 56, 173, 94, 21, 237, 82, 21, 6799
1806 DATA 6112, 141, 178, 23, 176, 2, 202, S5, 138, 7925
1897 DATA 6128, 237, 83, 21, 141, 177, 23, 176, 3, 6961
1883 DATA 6128, 189, @, 95, 168, 3, 185, @, 8, 674l

1989 DATA 6138, 72, 136, 16, 249, 56, 173, 83, 21, 6342
1819 DATA €144, 285, 179, 23, l44, 64, 288, 24, 173, 7164
1811 DATR 6152, 82, 21, 285, 178, 23, 144, 54, 288, 7067
1812 DATR 6168, 14, 168, B8, 194, 153, B, @, 208, 57S1
1813 pATA 6158, 192, 4. 298, 247, 1E3, 255, 96, 32, 7371
1814 DATA 6176, 154, 24, 168, ©, 174, 177, 23, 248, 7133
1815 DATA 6184, 14, 177, @8, 145, 2, 200, 208, 249, 7178
1815 DATA 6192, z39, 1, 230, 3, 282, 208, 242, 136, 7444
1817 DATA 6299, 288, 177, 8, 145, 2, 284, 176, 23, 7127
1818 DATRA 6298, 298, 245, 76, 17, 24, 173, 177, 23, 7152
1813 DATR €216, 248, 72, 172, 177, 23, 173, 178, 23, 7272
1822 DaTA 6224, 55, 233, 255, 178, 1, 138, 178, 132, 7383
1821 DATA 6232, 3, 138, 24, 1w3, 82, 21, 133, B, 6742
1822 DATA 6248, 144, 1, 298, 152, 183, 83, 21, 133, 7023
1823 DATA ©248, 1, 138, 24, 188, 178, 23, 133, 2, 6656
1824 DATA 6255, 144, 2, 239, 3, 165, 3, 189, 179, 789l
1825 DATA 6264, 23, 133, 3, iv4, 177, 23, 168, 255, 7212
1826 DATA 6272, 177, @, 145, 2, 136, 208, 248, 177, 7366
1827 DATA 6289, B, 145, 2, 198, L, 198, 3, 282, 7628

1828 DATA 6288, 288, 235, 32, 164, 24, 172, L¢6, 23, 7323

419

1829
1828
1831
183z
1833
1824
1835
1836
1837
1838
1833
1849
1841
1842

naTA
BATA
0ATA
DATA
DATA
DARTA
DATA
DATA
DATA
DATA
bATA
DATA
DATA
END

6236,

6284,

6312,

€323,

6328,

5338,

6344,
6352,
6360,
63&8,

6376,

£334,
6392,

420 BEYOND GAMES

a, 8, 8, B,

145, 2, 136, 192, 255, 288, 7411
i7, 24, 1v3, 82, 21, 133, 7877
173, 83, 21, 133, 1, 173, 178, 7974

173, 178, 23, 133, 3, 6929

8, 28, 32, 228, 2B, 127, ©B831

69, 84, 32, 68, B3, 6764

78, 65, 84, 73, 79, 63963

78, 68, 32, 88, B2, G367

32, 8L, 46, 255, 32, 7041
5, 18, 141, 1v8, 23, B931
14y, 173, 23, 95, @, 7812
9, 8, B, 8, 6334

9, @, 9, 8, 63392

Appendix E10:

Simple Text Editor

APPENDIX E1G A SIMFLE TEXT EDITOR

THE FOLLOWING DATA STATEMEMTS

CONTARIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 7E82 TO 8191
SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

1999 DATA 7698, 255, 1, 32, 15, 349, 32, 55, 38, 5139
1991 DATA 7688, 32, 2098, 308, 24, 24, 144, 245, 32, B4Z8
1992 pATA 7696, B, 28, 32, 228, 28, 127, 13, 10, Bl54
1593 DATA 77@34, 18, 83, 63, B84, 32, B85, 89, 32, 8179
1994 DATA 7712, &9, 68, 73, B4, 3z, 66, 65, 78, B25S
1885 DATA 7728, 78, B9, 82, 46, 13, 18, 18, 255, BZ7S
iegs DATA 77?28, 32, 233, 21, 32, 168, 23, 96,.32, 8357
1967 DRTA 7736, 196, 17, 32, 43, 17, 174, 3, 16, 8234
18988 DATA 7744, 168, 3, 32, 19, 17, 32, 43, 17, BE&Y
1S%9 pATA 7752, 32, 118, 1iv, 32, 188, 17, 32, 94, 8298
1918 DATA 7768, 38, 32, 211, 17, 3Z, 118, 17, 32, 8243
1511 DATA 7788, 137, 38, 32, 211, 17, 86, 32, 18, 8341
181z pDATA 7TY¥S, 21, 173, 3, 18, 74, 178, 282, 282, 8637
1313 DATA 7784, 32, 26, 19, 22, 18, 258, 173, 3, 8585
1814 paTA 7792, 16, 141, @8, 39, 3z, 148, 18, 32, 8263
13i5 pATA vegw, 155, 17, 32, 127, 17, 32, 13, 18, 8212
1915 DATA 7888, 285, B, 38, 18, 239, 32, 43, 21, 8395
1817 DATA 7816, 96, 173, 3, 18, 74, 232, 2, 32, 8445
1918 DATA 7824, 129, 17, 173, i, 38, 261, 1, 2038, 8584
1919 DATA 7832, S, 163, 73, 24, 144, 2, 163, 78, 84897
1827 DATA 7848, 232, 185, 17, 189, 2, 32, 129, 17, 8393
1321 DARTA 7848, 173, 7, 15, 32, 185, 17, 169, 2, B413
1822 DATA 7858, 32, 123, 17, 173, 6, 18, 32, 163, B4Z6
1923 DATA 7864, 17, 173, 5, 18, 32, 163, 17, 86, 8385
i$z4 DRTR 7872, 6, 2, 62, €8, 16, 127, Bl, O, BZZ7

1825 DRTA 7888, 32, 224, 18, 285, 198, 38, 288, 23, 6818
1925 DATA 7888, 72, 32, 224, 18, 205, 183, 30, 283, BB575
1527 DATA 7896, 4, 1B4, 184, 184, 96, 141, 199, 39, 8678
1328 DATA 7924, 184, 32. 231, 34, 173, 189, 38, 205, B305

421

1929
1938
1931
1932
1833
1934
1335
1936
1837
1923
1333
1949
1941
1942
1343
1944
1945
1348
1947
1843
1343
1958
1951
18952
1953
1954
1955
1956
1957
1858
1953
1968
1861
1962
1363
1964

DATA
BATAH
LATA
DATA
DRTA
oATR
boATA
DATA
DATA
DATA
DRTA
DARTAH
LATA
DATA
DATA
DATA
JUSHES]
DATA
DATA
pAaTA
DATA
DARTA
DATA
DATA
naTA
DATA
DARTA
DaTA
DATA
DATA
BATA
DATA
DATA
bnAaTA
BATA
END

7a1z,
7528,
7928,
7338,
7944,
7952,
7963,
vass,
7378,
7954,
7932,
8a0g,
suosa,
3818,
svz4,
sm32,
28049,
2048,
5056,
ape4,
8872,
8983,
88883,
sugs,
8104,
8112,
8120,
8128,
8138,
8144,
8152,
86160,
81658,
8176,
8184,

422 BEYOND GAMES

132, 28, 20, 11, 208, 1, 28, 16, 867
S, 183, 1, 141, 1, 38, 96, 285, BSE3
124, 3@, z@s, 4, 32, 121, 31, 96, 2644
285, 1S5, 38, 2898, 4, az, 135, 31, 8778
36, 245, 197, 3G, 288, 4, 32, 221, 83937
31, 95, 285, 188, 30, 293, 4, 32, 8754
187, 3i, 88, 285, 192, 30, 288, 4, 83523
32, 1ge, 3i, 96, 174, 1, 38, 244, 8752
4, 3z, 52, 31, 86, 32, 45, 19, 8287

2, 131, 23, 88, 72, 32, 18, 21, 8413
173, 83, 21, 72, 173, 82, 21, 72, B553
173, 85, 21, 72, 173, 84, 21, 72, 8781
3z, 183, 22, 32, 121, 23, 43, 17, 8416
32, 2z8, 24, 173, 24, 21, 208, 4, 8738
2u8, 85, z1, 285, 84, 21, 32, 214, gR93
23, 184, 141, 84, 21, 104, 141, 85, 8735
21, 124, 141, 82, 21, i@4, 141, 83, 8737
21, 32, 43, 21, 104, 32, 45, 31, B377
96, 32, 148, 18, 201, 255, 248, 4, 3859
3z, 131, 23, 86, 189, 255, 96, 5B, 8322
173, 83, 21, 285, 6, 18, 144, 12, 8734
z2e8, 16, 173, 82, 21, 285, 5, 18, gspg
z24@, 23, 178, B, 32, 26, 18, 169, 8779
8. 96, 173, B2, 21, 141, 5, 18, 8632
173, 83, 21, 141, &, 18, 189, 6, 8715
98, 169, 255, 95, 32z, 164, 23, 183, g1z
255, 22, 45, 13, 32, 131, 23, 18, 8673
248, 32, 180, 23, 9B, 32, 160, 23, 8539
32, zg, 28, 32, 148, 18, 281, 255, seaz
248, 8, 32, B4, z@, 32, 131, 23, 55394
16, 241, 78, 2B, 2@, 32, 18, 21, segz
1v3, 83, 21, 72, 173, 82, 21, 72, 8857
32, 225, 24, 32, 131, 23, 32, 183, 8771
22, 3z, 214, 23, 164, 141, 82, 21, 8815
l@4, 141, 83, 21, 32, 43, 21, 96, B¥25

Appendix El |:

Extending the Visible Monitor

APFENDIX EL1

EXTENDING THE VISIELE MONITOR

THE FOLLOWING DATA STATEMENTS

CONTAIM DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 4272 TO 4351
SUITABLE FOR LOADIMNG WITH

THE BASIC OBJECT CODE LOADER.

2GR
2031
z2Baz
2803
2004
2805
ZBBE
2637
aalsis)
2863
2918

nATA
DARTAH
naThR
DATA
DATA
nAaTA
BDRTAH
DARTA
oATA
boATA
END

4772,
4280,
4288,
4298,
4304,
4312,
4329,
4378,
4338,

4344,

281, 88, 2v8, 8, 173, B, 28, 73, 5236
255, 141, &, 28, 96, 261, 85, 203, 5286
g, 173, 2, 28, 73, z55, 141, Z, 4863

zn, 95, 2zBL, 72, 283, 13, 173, B, 5979
zn, z2us, 4, 32, 87, 21, 896, 32, 4884
174, 21, 96, 281, 77, 268, 4, 32, 5125
188, 23, 86, 2ZBi, 63, 208, 13, 173, 5277
A, 28, 208, 4, 22, 8, 25, 86, 472Z

3z, 38, 25, S5, 281, B4, 283, 4, SB24
3z, 2, 38, 95, S6, B, B, O, 4608

423

Appendix E|2:

System Data Block for the Ohio
Scientific C-|P

AFFENDIX El1Z2 SYSTEM DATA BLOCK FOR GS5I CIP

THE FOLLOWING DATA STATEMENTS

CONTRIN DECIMAL OBJECT CODE AND
CHECHSUNS FOR MEMORY FROM 4@36 TO 4119
SUITABLE FOR LOADING WITH

THE BASIC OBJECT COLE LOADER.

2183 DATA 4856, 181, 2e8, 32, 24, 24, 211, 32, 1B, 4744
218l UATA 41p4, 237, 254, 45, 181, 177, Z52, 15, 1B, 5zaz
2182 DATA 4112, 85, 95, @, @, B, @, o, 8, 4334

2183 EMD

QK

424 BEYOND GAMES

Appendix El 3:
System Data Block for the PET 200

APPENDIX E13 SYSTEM DATA BLOCK FOR THE PET 2631

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 48386 TO 4151
SUITABLE FOR LOADING WITH

THE BASIC OBJECT CODE LOADER.

2183 DATA 4286, 8. 128, 48, 38, 24, 131, 32, 38, 4520
2181 DATA 4184, 42, 15, 218, 255, 16, 16, 165, 15, 4651
218z DATA 4112, 965, 41, 127, 56, 281, B4, 144, 17, 4858
2183 DATA 4128, 281, 95, 144, 18, 162, 14, 141, 76, 4964
2184 DATA 4128, 232, 233, 32, 24, 144, 3, 56, 233, 5885
Z1@5 DATA 4135, 64, 96, 32, 228, 255, 41, 127, 24@. 5219
2186 DATA 4144, 249, 96, 8, 9, 8, B, @, 9, 4483

2187 ENR

oK

425

Appendix E|4:
System Data Block for the Apple |

APFENDIX E14 SYSTEM DATA ELOCK FOR THE AFPFLE 11

THE FOLLOMING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMCRY FROM 4B36 TO 4127
SUITHELE FUR LOADING WITH

THE BRSIC OBJECT CODE LOADER.

Zing DATA 4893, 8. 4, iz\s, 33, 7, 7, 189, zzz2, 4663
2181 DATA 4184, 23, 16, ZB, 16, 18, 165, 16, 18, 4246
2182 DATA 4112, S5, 9, 1z8, g5, 2z, 12, 253, 41, 4773
2133 pATA 412w, 127, 98, g9, iz\8, 32, 253, 251, 96, 5112
2184 END

OK

426 BEYOND GAMES

Appendix E15:

System Data Block for the Atari

APFENDIX EiS

SYSTEM DATA BLOCK FOR THE ATARI 829

THE FOLLOWING DATA STATEMENTS

CONTAIN DECIMAL OBJECT CODE AND
CHECKSUMS FOR MEMORY FROM 3712 TO 4223
SUITABLE FOR LOADING MWITH

THE BASIC OBJECT CODE LOARDER.

2188
2181
2182
2183
2164
2185
2186
2187
2128
2189
2119
2111
2112
2113
2114
2115
2116
Z117
2118
2118
2128
2121
2122
2123
2124
2125
2126
2127
2128

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

3riz,
3vza,
3728,
3736,
3744,
3752,
3768,
37ves,
3776,
3784,
3782z,
3804,
3838,
3816,
3824,
3832,
3849,
3848,
3856,
3864,
3872,
3886,
38848,
38986,
3984,
3912,
39z6,
3928,
3936,

3z, 198, 17, 173, 179, 23, 72, 173, 4577
178, 23, 72, 173, B85, zi, 72, 173, 4517
84, 21, 72. 173, 83, 21, 72, 173, 4427
gz, 21, 72, 32, 43, 17, 165, B, 4168
141, 178, 23, 165, 1, 141, 179, 23, 4585
32, 118, 17, 165, @, 141, 82, 21, 43Z8
165, 1, 141, 83, 21, 174, 3, 16, 4364
172, 4, 16, 32, 68, 17, 165, @, 4234
141, 84, 21, 185, 1, 141, 85, 21, 4435
32, 214, 23, 172, 4, 16, 182, B, 4487
3z, 68, 17, 174, 3, 16, 168, 1, 4255

3z, 19, 17, 1@4, 141, 8Z, 21, 1B4, 4320
141, 83, 21, 184, 141, B4, Zl, 104, 4507
141, 85, 21, 184, 141, 178, 23, 184, 4613
141, 178, 23, 32, 211, 17, 96, B, 4523
p, B, 8, 8, 8, B9, B, B, 3832

i»8, 196, 59, 8, 8, 187, 43, 42, 4305
111, @, 112, 117, 13, 185, 45, 61, 4412
118, @, 99, @, 8, 98, 128, 122, 4413

52, @8, 51, 54, 27, 53, 5@, 43, 4290

44, 32, 46, 119, @, 163, 47, 0, 4260
114, @, 181, 121, 9, 116, 119, 113, 4573
57, ©, 48, 55, B, 56, 60, 62, 4234

1@z, 1p4, 198, 6, @, 183, 115, 97, 4517
76, 74, 58, @, 8, 75, 91, 894, 4372

79, 8, 88, 85, 13, 73, 45, 61, 4348

86, 8, 67, 8, B, 66, 88, 98, 4317

52, 9, 51, 54, 27, 37, 34, 33, 4216

94, 32, 93, 78, B, ¥7¢, &3, 8, 4369

800

427

2129
2133
2131
2132
2133
Z134
2135
2138
2137
2138
2139
2148
2141
2142
2143
2144
2145
2146
2147
2148
2143
215¢
2151
2152
2153
2154
2155
2158
2157
2158
2153
2168
2161
212
2163
2164

oK

DATA
DATA
DATA
DATA
DATA
nATA
DATA
DATA
BDATA
DATA
DATA
BATA
DATA
DATA
DATA
DATA
BATA
DATA
DARTA
DATA
DATA
DATA
DATA
DATA
0ATA
DATA
DATA
oATA
DATA
DATA
DATA
DATA
DATA
oATA
DATA
END

3844,
3952,
3964,
3968,
3976,
3984,
393z,
4000,
4803,
4016,
4824,
4832,
4048,
4848,
4855,
4664,
4@7z,
4e88,
4888,
4836,
4184,
4112,
4129,
4128,
4136,
4144,
4152,
4160,
4168,
4176,
4184,
4192,
4203,
42983,
4218,

428 BEYOND GAMES

82, @, &9, 89, 9, 84, 87, 81, 4445
48, @, 41, 33, 127, 64, 8, 9, 42563
8, 72, &8, @, @, 71, 83, 65, 438y
g, 8, 8, 9, @, B, B, B, 3968

8, @, 15, g, 8, @, @, 9, 3392

8, 9, 3, 8, 8, g, 8, 8, 3987

8, 9, @, 8, g, g, g, B, 3992

8, 9, @, 8, 8, 9, g, B, 4@

8, 8, 9, g, @, a, 8, 8, 4908

8, 0, 8, 8, g, g, g, g, 4018

6. 8, 8, 8, @, p, g, 8, 493

g9, 8, 8, B, 8, B, @, 8, 4@32

8, 8, 8, 8, @, 8, g, B, 4p4p

8, 8, g, 8, B, B, g, B, 42483

9,8, 8, 8, B, g, u, 8, 4958

8, 8, g, @, g, g, g, 8, 4984

a8, 8,8, 8, 9, g, 8. 8, 4d@7z

8, 8, 8, g, g, @, g, 4, 4@80

9, 8, @, 8, 9, B, g, B, 4p8g

65, 124, 4@, 39, 23, 127, @, 123, 4638
48, 16, 54, 18, 16, 18, 16, 16, 4294

98, 41, 1zv, 56, zo1i, 32, 144, 8, 4817

281,
173,
173,
i85,
2aeg,
2a1,

96, 144, g, 281, 123, 144, 7, 5844

6, 16, gs, 56. 233, 3z, 96, 4836

252, 2, 201, 2ss, 248, 243, 1e8, 5678
8, 15, gs, 2, @, z@1, 13, 4854

6, 189, g, 141, 53, 18, 96, 4841

i@, 2@8, 3, 76, 128, 14, 141, 439431

5z, 18, 32, 186, 17, 1vz, 4, 1B, 4673

i74,.

53, 18, 32z, 68, 17, 173, 52, 4753

18, 32, 124, 17, 238, 53, 186, 173, 4853
§3, 186, 2os, 3, 18, zasg, 6, 32, 4731
58, 18, 32z, 1z8, 14, 3z, 211, 17, 4rag
85, 8, B, B, 8B, B, 8, @, 4394

a’ g.'

8, 8, 8, @, B, B, 4zi5

Index

ABSLUT 123
ABS.X 124
ABS.Y 124
absolute mode 16, 123
ACC 124
accumulator 3, 124
ADC 38
addressing
absolute indexed 21
base 20, 33
description 16-17
index 20-21
indirect 27, 45, 119, 126
pointer 45
relative 26, 127
zero page 17, 45, 129
zero page indexed 21
addition 38
ALL.OFF 85
ALL.ON 85
AND 39
Apple computer 2, 6, 7, 44
arithmetic 23, 34
arrow line 67, 72
ASCII 11, 15, 46, 52, 54, 62, 145, 159
assemblers 12, 45
assembly language 1, 8
Atari computer 2, 6, 7, 44

BAD 117
BASIC 7, 26, 28
BCC 24

BCS 24

BEQ 23-24
binary 9, 36
bits 4, 8, 41, 45
bit twiddling 39
BLANK 58
BMI 24

BNE 21, 23-24

BPL 24

branch 23-24, 41, 114
break flag 22

bug 49

BVC 24

BVS 24

byte 8

call 28

carry 23, 35, 36, 38
carry flag 22
cartesian coordinates 49
CENTER 55
character graphics 44
CHARS 90

CLD 39

clear screen 57
CLR.TV 57

CLR.XY 58

CMP 22

comma 21
COMMENT 14
compare 22
conditional branch 23
constant 15-16, 22
CPX 21-22

CPY 22

CR.LF 89

CR.LFS 90

data line 67, 69
data mode 61
debugging 49

DEC 37

decimal 15, 39
decimal flag 22, 39
decrement 37
delete 158

INDEX 429

DEST 154

DEX 37

directives 18
disassembler 114, 160
display-memory 47, 49
divide 36
documentation 14
DSLINE 117
DUMMY 162

dummy subroutine 30
DUMPSL 102

EA 154

EDITIT 152
EDITOR 146
EDMODE 148, 153
8080 7

equate 18
error-checking 52
ETX 92, 129, 157
EXTEND 161

fetch 12, 27

FINISH 131

FIXCHR 46

flag 33, 42, 67, 85, 160
FLSHKY 153

flush buffer 157

front end 135

function keys 133

GETKEY 76, 152
GOSUB 28
GOTO 26
graphic 46, 64

hand 44
HEADER 107
hierarchy 73

hexadecimal 9-12, 19, 52, 62, 98, 114

HEXDUMP 160
hexdump 13, 98

high byte 45, 119, 121
HOME 48

hook 30, 84

immediate mode 14-15, 22, 125

430 BEYOND GAMES

IMMEDT 125
IMPLID 125
implied mode 125
INC 37
increment 21, 24, 37
index 25, 33, 118-119
INDRCT 126
IND.X 126
IND.Y 127
input/outut 5
input ports 4
INSCHR 149
INSERT 154
insert 149
instruction:

cycle 11-12

set 7
interpreter 7
interrupt flag 22
INX 21, 37
INY 37

JMP 28, 62
JSR 28, 63, 119
juggling 8, 15

key 74

LABEL 14
label 14, 18, 21, 45
label line 67, 69
LDA 14-15, 20
LDX 14, 20
LDY 14
least-significant:
byte 17
bit 45, 54
LIFO 30
listing 159
logical operations 23, 39
loop 22, 24, 66, 139
low byte 45, 121
LPAREN 121

machine language 12, 60
mask 39

MCODES 118

memory 3, 44

memory-mapped display 44
message 84
microprocessor 3, 7
MNAMES 118
MNEMON 118
MNEMONIC 14
mnemonic 14, 114
mode 148-149
MODEKY 153
MODES 119
monitor 60-61
most-significant:

byte 17

bit 45, 54
MOVDN 139
move 134
MOV .EA 135, 154
MOVER 143, 160
MOVE TOOL 142
MOVNUM 135
multiply 36

negative 23, 26
negative flag 22
NEXTCH 155
next character 155
NEXTKY 153
NEXTSL 111
nybbles 10, 39

object code 10, 12, 15

Ohio Scientific (OSI) computer 2, 6, 7, 44, 47, 61, 159

ONEBYT 120
opcodes 11-12, 14-15, 27, 114
OPERAND 14
operand 14, 16, 17, 21, 24-28, 38, 114
operating systems 6
OPERND 119
ORA 39
output:
port 4
print 84
vectors 88
overflow flag 22
overlap 135
overstrike 149
OVRCHR 149

P register 22

page 17

PAGE-DOWN 141
PAGE-UP 141
parentheses 119
PC11-12, 27

PET computer 2, 6-7, 44
PHA 30

PLA 30

pockets 8, 31

pointers 27, 45, 119
POINTR 45

pop 30

POP.SL 95, 155
positive 26

PR.ADR 102

PR.BYT 89

PR.CHR 87

PR.DIS 132, 160
PRDUMP 103, 160
PR.EA 107

previous character 156
PREVKY 153

PREVCH 156

PRINT: 93

print 157

print utilities 84
PRLINE 109

PR.MSG 91

PR.OFF 85

program counter 11, 27
programmable memory 4, 7
PR.ON 85

PR.SA 106

PRTBUF 157

PRTKEY 153
pseudo-addressing mode 129
pseudo-mnemonic 117
push 30

PUSHSL 95, 154

QUITKY 152

RANGE 107
registers:
A3 815
compare 22
description 3

INDEX 431

index 20 TAY 33

processor status (P) 22, 64 TEST 24

transfer 33 TEX 92, 130

X register 3, 8, 20, 24, 49, 56 text:

Y register 3, 8, 21, 49, 56 buffer 146
RELATV 127 description 130, 145, 150
relocate 28 editor 145, 160
RETURN 28 title 142
return 29 toggle 41
ROM 4, 6 tool 142
ROMPRT 88 truth table 39
ROMTVT 88 TVCOLS 49, 150
rotate 36 TV.DIS 132, 160
ROWINC 48 TVDOWN 51
RPAREN 121 TVDUMP 98, 160
RTS 28, 62, 136 . TVHOME 55
RUBKEY 153 TVPLUS 51

TVPOP 56, 59

TVPTR 45
SA 154 TVPUSH 56, 59
SAHERE 154 TV.PUT 46
screen 44 TVROWS 49
screen utilities 58 TVSKIP 51
SED 39 TVT 84
SELECT 94, 117 TVT.OFF 85
set 39 TVT.ON 85
SETBUF 147 TVTOXY 48
SET.DA 143 TWOBYT 121
shift 35 TXA 33
SHOWIT 148 TXMODE 130
6502 8, 11 TYA 33
6800 7
source code 13, 18 UPDATE 74, 162
SPACE 89-90 USR.OFF 85
space bar 65 USR.ON 85
STA 16, 20 USROUT 88
stack 30 utilities 120, 134
status 150
STRIKE 153 , Visible Monitor 63, 160
string 129, 145 VUBYTE 52, 54
SUBPTR 119 VUCHAR 52
subroutines 30, 62, 119
SUBS 120, 130 XINDEX 122
subtraction 38 XOR 39, 41
SYSTEM DATA 88

YINDEX 122

table 32, 118-119
TAX 33 2807

432 BEYOND GAMES

zero 22

zero flag 22
ZEROPG 128
ZERO.X 129
ZERO.Y 129

INDEX 433

ortware

Beyond Games: Systéms Software for Your 6502
Personal Computer

By Ken Skier

Use your 6502 personal computer for more than games! Learn
how it works and how to make it work for you. This book, for Apple,
Atari, Ohio Scientific and PET computer owners who know little or
nothing about bits, bytes, hardware, and software, presents a guid-
ed tour of your computer. Beginning with basic concepts such as

- what is memory? and what is a program?, Beyond Games moves
through a fast but surprisingly complete course in assembly
language programming. Having mastered these fundamentals, the
reader is introduced to many useful subroutines and programming
tools, such as screen utilities, print utilities, a machine language
monitor, a hexadecimal dump tool, a move tool, a disassembler, .
and a simple, screen- based text edltor

Abbut the Author

Ken Skier, systems analyst for Wang Laboratories, Inc, designs soft-
ware for word. processing and other applications concerning the of-
fice of the future. A Massachusetts Institute of Technology graduate,
he co- founded the M.L.T. Writing Program, where he teaches science
fiction writing. He lives in Cambridge, Massachusetts, with his wife
Cynthia and a nameless white cat.

0-07-057860-5

